Example #1
0
def clouds(input_filename):
    tensor = tf.image.convert_image_dtype(load(input_filename), tf.float32)

    pre_shape = [SMALL_Y, SMALL_X, 1]
    post_shape = [LARGE_Y, LARGE_X, 1]

    control_kwargs = {
        "freq": FREQ * 2,
        "lattice_drift": 1,
        "octaves": OCTAVES,
        "ridges": True,
        "shape": pre_shape,
        "warp_freq": 3,
        "warp_range": .25,
        "warp_octaves": 2,
    }

    control = generators.multires(**control_kwargs)

    layer_0 = tf.ones(pre_shape)
    layer_1 = tf.zeros(pre_shape)

    combined = effects.blend_layers(control, pre_shape, 1.0, layer_0, layer_1)

    shadow = effects.offset(combined, pre_shape, random.randint(-15, 15),
                            random.randint(-15, 15))
    shadow = tf.minimum(shadow * 2.5, 1.0)
    shadow = effects.convolve(effects.ConvKernel.blur, shadow, pre_shape)
    shadow = effects.convolve(effects.ConvKernel.blur, shadow, pre_shape)
    shadow = effects.convolve(effects.ConvKernel.blur, shadow, pre_shape)

    shadow = effects.resample(shadow, post_shape)
    combined = effects.resample(combined, post_shape)

    tensor = effects.blend(tensor, tf.zeros(post_shape), shadow * .5)
    tensor = effects.blend(tensor, tf.ones(post_shape), combined)

    post_shape = [LARGE_Y, LARGE_X, 3]

    tensor = effects.shadow(tensor, post_shape, alpha=.25)

    tensor = effects.bloom(tensor, post_shape, .333)
    tensor = recipes.dither(tensor, post_shape, .075)

    combined = tf.image.adjust_contrast(combined, 1.125)

    with tf.Session().as_default():
        save(tensor, FINAL_FILENAME)
Example #2
0
def _control():
    shape = [SMALL_Y, SMALL_X, 1]

    control = generators.multires(shape=shape, freq=FREQ, octaves=OCTAVES, refract_range=.5)

    erode_kwargs = {
        "alpha": .025,
        "density": 40,
        "iterations": 20,
        "inverse": True,
    }

    iterations = 5
    for i in range(iterations):
        control = effects.erode(control, shape, **erode_kwargs)
        control = effects.convolve(constants.ValueMask.conv2d_blur, control, shape)

    post_shape = [LARGE_Y, LARGE_X, 1]
    control = effects.resample(control, post_shape)

    iterations = 2
    for i in range(iterations):
        control = effects.erode(control, post_shape, **erode_kwargs)
        control = effects.convolve(constants.ValueMask.conv2d_blur, control, post_shape)

    control = effects.convolve(constants.ValueMask.conv2d_sharpen, control, post_shape)
    control = effects.normalize(control)

    with tf.Session().as_default():
        save(control, CONTROL_FILENAME)
Example #3
0
def interference(tensor, shape, time=0.0, speed=1.0):
    """
    """

    height, width, channels = shape

    value_shape = [height, width, 1]

    distortion = basic(2,
                       value_shape,
                       time=time,
                       speed=speed,
                       distribution=ValueDistribution.simplex,
                       corners=True)

    scan_noise = basic([2, 1], [2, 1, 1],
                       time=time,
                       speed=speed,
                       distribution=ValueDistribution.simplex)
    scan_noise = tf.tile(scan_noise, [random.randint(32, 128), width, 1])
    scan_noise = effects.resample(scan_noise, value_shape, spline_order=0)
    scan_noise = effects.refract(scan_noise,
                                 value_shape,
                                 1,
                                 reference_x=distortion)

    tensor = 1.0 - (1.0 - tensor) * scan_noise

    return tensor
Example #4
0
def main(ctx, name, input_filename):
    tensor = tf.image.convert_image_dtype(load(input_filename), tf.float32)

    max_height = 1024
    max_width = 1024

    with tf.Session().as_default():
        height, width, channels = tf.shape(tensor).eval()

        need_resample = False

        if height != width:
            length = min(height, width)
            height = length
            width = length

            tensor = tf.image.resize_image_with_crop_or_pad(tensor, length, length)

        if height > max_height:
            need_resample = True
            width = int(width * (max_height / height))
            height = max_height

        if width > max_width:
            need_resample = True
            height = int(height * (max_width / width))
            width = max_width

        shape = [height, width, channels]

        if need_resample:
            tensor = effects.resample(tensor, shape)

        save(tensor, name)
Example #5
0
def clouds(tensor, shape, time=0.0, speed=1.0):
    """Top-down cloud cover effect"""

    pre_shape = [int(shape[0] * .25) or 1, int(shape[1] * .25) or 1, 1]

    control_kwargs = {
        "freq": random.randint(2, 4),
        "lattice_drift": 1,
        "octaves": 8,
        "ridges": True,
        "speed": speed,
        "shape": pre_shape,
        "time": time,
        "warp_freq": 3,
        "warp_range": .125,
        "warp_octaves": 2,
        "distrib": ValueDistribution.simplex,
    }

    control = multires(**control_kwargs)

    layer_0 = tf.ones(pre_shape)
    layer_1 = tf.zeros(pre_shape)

    combined = effects.blend_layers(control, pre_shape, 1.0, layer_0, layer_1)

    shadow = effects.offset(combined, pre_shape, random.randint(-15, 15),
                            random.randint(-15, 15))
    shadow = tf.minimum(shadow * 2.5, 1.0)

    for _ in range(3):
        shadow = effects.convolve(ValueMask.conv2d_blur, shadow, pre_shape)

    post_shape = [shape[0], shape[1], 1]

    shadow = effects.resample(shadow, post_shape)
    combined = effects.resample(combined, post_shape)

    tensor = effects.blend(tensor, tf.zeros(shape), shadow * .75)
    tensor = effects.blend(tensor, tf.ones(shape), combined)

    tensor = effects.shadow(tensor, shape, alpha=.5)

    return tensor
Example #6
0
def main(ctx, seed, name, preset_name, input_filename):
    generators.set_seed(seed)

    tensor = tf.image.convert_image_dtype(load(input_filename), tf.float32)

    max_height = 1024
    max_width = 1024

    with tf.Session().as_default():
        height, width, channels = tf.shape(tensor).eval()

        need_resample = False

        # Some presets only like square images. Work around for now by cropping.
        if height != width:
            length = min(height, width)
            height = length
            width = length

            tensor = tf.image.resize_image_with_crop_or_pad(tensor, length, length)

        if height > max_height:
            need_resample = True
            width = int(width * (max_height / height))
            height = max_height

        if width > max_width:
            need_resample = True
            height = int(height * (max_width / width))
            width = max_width

        shape = [height, width, channels]

        if need_resample:
            tensor = effects.resample(tensor, shape)

        kwargs, preset_name = presets.load(preset_name, presets.EFFECTS_PRESETS())

        kwargs["shape"] = [height, width, channels]

        if "freq" not in kwargs:
            kwargs["freq"] = [3, 3]

        if "octaves" not in kwargs:
            kwargs["octaves"] = 1

        if "ridges" not in kwargs:
            kwargs["ridges"] = False

        tensor = effects.post_process(tensor, **kwargs)
        tensor = recipes.post_process(tensor, **kwargs)

        print(preset_name)
        save(tensor, name)
Example #7
0
def crt(tensor, shape):
    """
    Apply vintage CRT snow and scanlines.

    :param Tensor tensor:
    :param list[int] shape:
    """

    height, width, channels = shape

    value_shape = [height, width, 1]

    distortion = basic(3, value_shape)
    distortion_amount = .25

    white_noise = basic(int(height * .75), value_shape, spline_order=0) - .5
    white_noise = effects.center_mask(
        white_noise,
        effects.refract(white_noise,
                        value_shape,
                        distortion_amount,
                        reference_x=distortion), value_shape)

    white_noise2 = basic([int(height * .5), int(width * .25)], value_shape)
    white_noise2 = effects.center_mask(
        white_noise2,
        effects.refract(white_noise2,
                        value_shape,
                        distortion_amount,
                        reference_x=distortion), value_shape)

    tensor = effects.blend_cosine(tensor, white_noise, white_noise2 * .25)

    scan_noise = tf.tile(basic([2, 1], [2, 1, 1]),
                         [int(height * .333), width, 1])
    scan_noise = effects.resample(scan_noise, value_shape)
    scan_noise = effects.center_mask(
        scan_noise,
        effects.refract(scan_noise,
                        value_shape,
                        distortion_amount,
                        reference_x=distortion), value_shape)
    tensor = effects.blend_cosine(tensor, scan_noise, 0.25)

    if channels <= 2:
        return tensor

    tensor = tf.image.random_hue(tensor, .125)
    tensor = tf.image.adjust_saturation(tensor, 1.25)

    return tensor
Example #8
0
def frame(tensor, shape, time=0.0, speed=1.0):
    """
    """

    half_shape = [int(shape[0] * .5), int(shape[1] * .5), shape[2]]
    half_value_shape = [half_shape[0], half_shape[1], 1]

    noise = multires(64,
                     half_value_shape,
                     time=time,
                     speed=speed,
                     distrib=ValueDistribution.simplex,
                     octaves=8)

    black = tf.zeros(half_value_shape)
    white = tf.ones(half_value_shape)

    mask = effects.singularity(None,
                               half_value_shape,
                               1,
                               dist_func=3,
                               inverse=True)
    mask = effects.normalize(mask + noise * .005)
    mask = effects.blend_layers(tf.sqrt(mask), half_value_shape, 0.0125, white,
                                black, black, black)

    faded = effects._downsample(tensor, shape, half_shape)
    faded = tf.image.adjust_brightness(faded, .1)
    faded = tf.image.adjust_contrast(faded, .75)
    faded = effects.light_leak(faded, half_shape, .125)
    faded = effects.vignette(faded, half_shape, 0.05, .75)

    edge_texture = white * .9 + effects.shadow(noise, half_value_shape,
                                               1.0) * .1

    out = effects.blend(faded, edge_texture, mask)
    out = effects.aberration(out, half_shape, .00666)
    out = grime(out, half_shape)

    out = tf.image.adjust_saturation(out, .5)
    out = tf.image.random_hue(out, .05)

    out = effects.resample(out, shape)

    out = scratches(out, shape)

    out = stray_hair(out, shape)

    return out
Example #9
0
def main(ctx, name, retro_upscale, input_filename):
    shape = effects.shape_from_file(input_filename)

    tensor = tf.image.convert_image_dtype(load(input_filename, channels=3),
                                          tf.float32)

    if retro_upscale:
        shape = [shape[0] * 2, shape[1] * 2, shape[2]]

        tensor = effects.resample(tensor, shape, spline_order=0)

    tensor = effects.square_crop_and_resize(tensor, shape, 1024)

    with tf.Session().as_default():
        save(tensor, name)
Example #10
0
def basic(ctx, width, height, input_dir, name):
    shape = [height, width, 3]

    filenames = [
        f for f in os.listdir(input_dir)
        if f.endswith(".png") or f.endswith(".jpg")
    ]

    collage_count = min(random.randint(3, 5), len(filenames))
    collage_images = []

    for i in range(collage_count + 1):
        index = random.randint(0, len(filenames) - 1)

        collage_input = tf.image.convert_image_dtype(util.load(
            os.path.join(input_dir, filenames[index])),
                                                     dtype=tf.float32)
        collage_images.append(effects.resample(collage_input, shape))

    base = generators.basic(freq=random.randint(2, 5),
                            shape=shape,
                            lattice_drift=random.randint(0, 1),
                            hue_range=random.random())

    control = effects.value_map(collage_images.pop(), shape, keep_dims=True)

    tensor = effects.blend_layers(control, shape,
                                  random.random() * .5, *collage_images)

    tensor = effects.blend(tensor, base, .125 + random.random() * .125)

    tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125)
    tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125)

    tensor = tf.image.adjust_brightness(tensor, .05)
    tensor = tf.image.adjust_contrast(tensor, 1.25)

    with tf.Session().as_default():
        save(tensor, name)

    print(name)
Example #11
0
def crt(tensor, shape, time=0.0, speed=1.0):
    """
    Apply vintage CRT snow and scanlines.

    :param Tensor tensor:
    :param list[int] shape:
    """

    height, width, channels = shape

    value_shape = [height, width, 1]

    # Horizontal scanlines
    scan_noise = tf.tile(
        basic([2, 1], [2, 1, 1],
              time=time,
              speed=speed,
              distrib=ValueDistribution.simplex,
              spline_order=0), [int(height * .125) or 1, width, 1])
    scan_noise = effects.resample(scan_noise, value_shape)

    scan_noise = lens_warp(scan_noise, value_shape, time=time, speed=speed)

    tensor = effects.normalize(
        effects.blend(tensor, (tensor + scan_noise) * scan_noise, 0.05))

    if channels == 3:
        tensor = effects.aberration(tensor, shape,
                                    .0075 + random.random() * .0075)
        tensor = tf.image.random_hue(tensor, .125)
        tensor = tf.image.adjust_saturation(tensor, 1.25)

    tensor = tf.image.adjust_contrast(tensor, 1.25)

    tensor = effects.vignette(tensor,
                              shape,
                              brightness=0,
                              alpha=random.random() * .175)

    return tensor
Example #12
0
def render(ctx, glitch, vhs, crt, scan_error, snow, dither, aberration, bloom, name, input_filename):
    tensor = tf.image.convert_image_dtype(load(input_filename), tf.float32)

    freq = [3, 3]

    max_height = 1024
    max_width = 1024

    with tf.Session().as_default():
        height, width, channels = tf.shape(tensor).eval()

        need_resample = False

        if height > max_height:
            need_resample = True
            width = int(width * (max_height / height))
            height = max_height

        if width > max_width:
            need_resample = True
            height = int(height * (max_width / width))
            width = max_width

        shape = [height, width, channels]

        if need_resample:
            tensor = effects.resample(tensor, shape)

        tensor = effects.post_process(tensor, shape=shape, freq=freq, with_bloom=bloom, with_aberration=aberration)

        tensor = recipes.post_process(tensor, shape=shape, freq=freq, with_glitch=glitch, with_vhs=vhs, with_crt=crt,
                                      with_scan_error=scan_error, with_snow=snow, with_dither=dither)

        save(tensor, name)

    print(name)
Example #13
0
def spooky_ticker(tensor, shape):
    """
    """

    if random.random() > .75:
        tensor = on_screen_display(tensor, shape)

    _masks = [
        ValueMask.arecibo_nucleotide,
        ValueMask.arecibo_num,
        ValueMask.bank_ocr,
        ValueMask.bar_code,
        ValueMask.bar_code_short,
        ValueMask.emoji,
        ValueMask.fat_lcd_hex,
        ValueMask.hex,
        ValueMask.iching,
        ValueMask.ideogram,
        ValueMask.invaders,
        ValueMask.lcd,
        ValueMask.letters,
        ValueMask.matrix,
        ValueMask.numeric,
        ValueMask.script,
        ValueMask.white_bear,
    ]

    bottom_padding = 2

    rendered_mask = tf.zeros(shape)

    for _ in range(random.randint(1, 3)):
        mask = _masks[random.randint(0, len(_masks) - 1)]
        mask_shape = masks.mask_shape(mask)

        multiplier = 1 if mask != ValueMask.script and (
            mask_shape[1] == 1 or mask_shape[1] >= 10) else 2

        width = int(shape[1] / multiplier) or 1
        width = mask_shape[1] * int(
            width /
            mask_shape[1])  # Make sure the mask divides evenly into width

        freq = [mask_shape[0], width]

        this_mask = basic(freq, [mask_shape[0], width, 1],
                          corners=True,
                          spline_order=0,
                          distrib=ValueDistribution.ones,
                          mask=mask)

        this_mask = effects.resample(this_mask,
                                     [mask_shape[0] * multiplier, shape[1]],
                                     spline_order=1)

        rendered_mask += tf.pad(
            this_mask,
            tf.stack([[
                shape[0] - mask_shape[0] * multiplier - bottom_padding,
                bottom_padding
            ], [0, 0], [0, 0]]))

        bottom_padding += mask_shape[0] * multiplier + 2

    alpha = .5 + random.random() * .25

    # shadow
    tensor = effects.blend(
        tensor, tensor * 1.0 - effects.offset(rendered_mask, shape, -1, -1),
        alpha * .333)

    return effects.blend(tensor, tf.maximum(rendered_mask, tensor), alpha)
Example #14
0
def basic(ctx, width, height, input_dir, name, control_filename,
          retro_upscale):
    shape = [height, width,
             3]  # Any shape you want, as long as it's [1024, 1024, 3]

    filenames = []

    for root, _, files in os.walk(input_dir):
        for filename in files:
            if filename.endswith(('.png', '.jpg')):
                filenames.append(os.path.join(root, filename))

    collage_count = min(random.randint(4, 6), len(filenames))
    collage_images = []

    for i in range(collage_count + 1):
        index = random.randint(0, len(filenames) - 1)

        input_filename = os.path.join(input_dir, filenames[index])

        collage_input = tf.image.convert_image_dtype(util.load(input_filename,
                                                               channels=3),
                                                     dtype=tf.float32)

        input_shape = effects.shape_from_file(input_filename)

        if retro_upscale:
            input_shape = [
                input_shape[0] * 2, input_shape[1] * 2, input_shape[2]
            ]

            collage_input = effects.resample(collage_input,
                                             input_shape,
                                             spline_order=0)

        collage_input = effects.square_crop_and_resize(collage_input,
                                                       input_shape, 1024)

        collage_images.append(collage_input)

    base = generators.basic(freq=random.randint(2, 5),
                            shape=shape,
                            lattice_drift=random.randint(0, 1),
                            hue_range=random.random())

    if control_filename:
        control = tf.image.convert_image_dtype(util.load(control_filename,
                                                         channels=1),
                                               dtype=tf.float32)

        control = effects.square_crop_and_resize(
            control, effects.shape_from_file(control_filename), 1024)

        control = effects.value_map(control, shape, keep_dims=True)

    else:
        control = effects.value_map(collage_images.pop(),
                                    shape,
                                    keep_dims=True)

    control = effects.convolve(effects.ValueMask.conv2d_blur, control,
                               [height, width, 1])

    with tf.Session().as_default():
        # sort collage images by brightness
        collage_images = [
            j[1] for j in sorted([(tf.reduce_sum(i).eval(), i)
                                  for i in collage_images])
        ]

        tensor = effects.blend_layers(control, shape,
                                      random.random() * .5, *collage_images)

        tensor = effects.blend(tensor, base, .125 + random.random() * .125)

        tensor = effects.bloom(tensor,
                               shape,
                               alpha=.25 + random.random() * .125)
        tensor = effects.shadow(tensor,
                                shape,
                                alpha=.25 + random.random() * .125,
                                reference=control)

        tensor = tf.image.adjust_brightness(tensor, .05)
        tensor = tf.image.adjust_contrast(tensor, 1.25)

        save(tensor, name)

    print('mashup')
Example #15
0
def values(freq,
           shape,
           distrib=ValueDistribution.normal,
           corners=False,
           mask=None,
           mask_inverse=False,
           spline_order=3,
           wavelet=False,
           time=0.0,
           speed=1.0):
    """
    """

    initial_shape = freq + [shape[-1]]

    if isinstance(distrib, int):
        distrib = ValueDistribution(distrib)

    elif isinstance(distrib, str):
        distrib = ValueDistribution[distrib]

    if isinstance(mask, int):
        mask = ValueMask(mask)

    elif isinstance(mask, str):
        mask = ValueMask[mask]

    if distrib == ValueDistribution.ones:
        tensor = tf.ones(initial_shape)

    elif distrib == ValueDistribution.mids:
        tensor = tf.ones(initial_shape) * .5

    elif distrib == ValueDistribution.normal:
        tensor = tf.random_normal(initial_shape)

    elif distrib == ValueDistribution.uniform:
        tensor = tf.random_uniform(initial_shape)

    elif distrib == ValueDistribution.exp:
        tensor = tf.cast(tf.stack(np.random.exponential(size=initial_shape)),
                         tf.float32)

    elif distrib == ValueDistribution.laplace:
        tensor = tf.cast(tf.stack(np.random.laplace(size=initial_shape)),
                         tf.float32)

    elif distrib == ValueDistribution.lognormal:
        tensor = tf.cast(tf.stack(np.random.lognormal(size=initial_shape)),
                         tf.float32)

    elif distrib == ValueDistribution.column_index:
        tensor = tf.expand_dims(
            tf.cast(effects.normalize(effects.column_index(initial_shape)),
                    tf.float32), -1) * tf.ones(initial_shape, tf.float32)

    elif distrib == ValueDistribution.row_index:
        tensor = tf.expand_dims(
            tf.cast(effects.normalize(effects.row_index(initial_shape)),
                    tf.float32), -1) * tf.ones(initial_shape, tf.float32)

    elif distrib == ValueDistribution.simplex:
        tensor = simplex.simplex(initial_shape, time=time, speed=speed)

    elif distrib == ValueDistribution.simplex_exp:
        tensor = tf.pow(simplex.simplex(initial_shape, time=time, speed=speed),
                        4)

    else:
        raise ValueError("%s (%s) is not a ValueDistribution" %
                         (distrib, type(distrib)))

    if mask:
        atlas = None

        if mask == ValueMask.truetype:
            from noisemaker.glyphs import load_glyphs

            atlas = load_glyphs([15, 15, 1])

            if not atlas:
                mask = ValueMask.numeric  # Fall back to canned values

        channel_shape = freq + [1]

        mask_values, _ = masks.mask_values(mask,
                                           channel_shape,
                                           atlas=atlas,
                                           inverse=mask_inverse,
                                           time=time,
                                           speed=speed)

        tensor *= mask_values

    if wavelet:
        tensor = effects.wavelet(tensor, initial_shape)

    tensor = effects.resample(tensor, shape, spline_order=spline_order)

    if (not corners and (freq[0] % 2) == 0) or (corners and
                                                (freq[0] % 2) == 1):
        tensor = effects.offset(tensor,
                                shape,
                                x=int((shape[1] / freq[1]) * .5),
                                y=int((shape[0] / freq[0]) * .5))

    return tensor