Y_training = Y[0:200] X_test = X[200:437] Y_test = Y[200:437] dbn = dbn.DBN([X_training.shape[1], 1000, 2], learn_rates=0.3, learn_rate_decays=0.9, epochs=10, verbose=1) logReg = linear_model.LogisticRegression(C=1e6) dbn.fit(X_training, Y_training) logReg.fit(X_training, Y_training) i = 0 preds, probs = dbn.predict(X_test) total = 0 correct = 0 for xt in X_test: dbn_pred, dbn_prob = dbn.predict(xt) theta = logReg.coef_[0] intercept = logReg.intercept_ logReg_pred = confidenceLogRegression(theta, xt, intercept) if float(dbn_prob[0][1]) >= 0.55: if dbn_pred[0] == Y_test[i]: correct += 1 preds[i] = 1 total += 1
verbose=1, ) net1.fit(X_training_Matrix,Y_training_Matrix) logReg = linear_model.LogisticRegression(C=1e6) logReg.fit(X_training_Matrix, Y_training_Matrix) dbn = dbn.DBN( [X_training.shape[1],1000,2], learn_rates = 0.3, learn_rate_decays = 0.9, epochs = 10, verbose = 1) dbn.fit(X_training, Y_training) net1Preds,net1Probs = net1.predict(X_test_Matrix) dbnPreds,dbnProbs = dbn.predict(X_test) logRegPreds = logReg.predict(X_test_Matrix) print "neural network" print classification_report(Y_test_Matrix, net1Preds) print "deep belief network" print classification_report(Y_test, dbnPreds) print "logistic regression" print classification_report(Y_test_Matrix, logRegPreds) count = 0 i = 0 while i < 237: if Y_test[i] == net1Preds[i] == logRegPreds[i] == dbnPreds[i]: count = count + 1 print
mediaFeatureDBNPreds,mediaFeatureDBNProbs = dbn.predict(mediaFeatureTest) print classification_report(Y_test_Matrix,mediaFeatureDBNPreds) ########################deep belief network with media features########################################### """ ########################deep belief network with comment features########################################### commentFeatureTraining = X_training_Matrix[0:200,15:35] commentFeatureTest = X_test_Matrix[0:237,15:35] dbn = dbn.DBN( [commentFeatureTraining.shape[1],1000,2], learn_rates = 0.1, learn_rate_decays = 0.9, epochs = 100, verbose = 1) dbn.fit(commentFeatureTraining, Y_training_Matrix) commentFeatureDBNPreds,commentFeatureDBNProbs = dbn.predict(commentFeatureTest) print classification_report(Y_test_Matrix,commentFeatureDBNPreds) ########################deep belief network with media features########################################### ##################### THIS IS BELIEF NETWORK ############################################ """userFeatureTraining = X_training_Matrix[0:200,35:] logReg = linear_model.LogisticRegression(C=1e6) logReg.fit(userFeatureTraining, Y_training_Matrix) print str(X_test_Matrix.shape)+" shape of test matrix" print "logistic regression using user features"