axv.set_title('Eigenvalues of Q') axw.set_title('Eigenvectors of Q') axw.set_xlabel('Time before spike [ms]') axv.plot(w_out, 'ko') eiginds = [0, 1, fl-2, fl-1] for ind, (eigind, w) in enumerate(zip(eiginds, w_out[eiginds])): axv.plot(eigind, w, 'o', color=colors[ind]) axw.plot(t, v_out[:, eigind], color=colors[ind]) generator = np.convolve(eigvecs[i, j, :, eigind], stimulus[j, :], mode='full')[:-st.filter_length+1] nonlinearity, bins = nlt.calc_nonlin(spikes, generator, nr_bins=40) axn.plot(bins, nonlinearity/st.frame_duration, color=colors[ind]) axn.set_title('Nonlinearities') axn.set_ylabel('Firing rate [Hz]') axn.set_xlabel('Stimulus projection') plt.suptitle(f'{st.exp_foldername}\n' f'{st.stimname}\n' f'{st.clids[i]} {gqmlabel} corr: {cross_corr:4.2f} nsp: {spikes.sum():5.0f}') plt.tight_layout() plt.subplots_adjust(top=.85) #%% plt.savefig(os.path.join(savedir, st.clids[i]+'.svg'), bbox_inches='tight', pad_inches=0.3)
def cca_omb_components(exp: str, stim_nr: int, n_components: int = 6, regularization=None, filter_length=None, cca_solver: str = 'macke', maxframes=None, shufflespikes: bool = False, exclude_allzero_spike_rows: bool = True, savedir: str = None, savefig: bool = True, sort_by_nspikes: bool = True, select_cells: list = None, plot_first_ncells: int = None, whiten: bool = False): """ Analyze OMB responses using cannonical correlation analysis and plot the results. Parameters --- n_components: Number of components that will be requested from the CCA anaylsis. More numbers mean the algortihm will stop at a later point. That means components of analyses with fewer n_components are going to be identical to the first n components of the higher-number component analyses. regularization: The regularization parameter to be passed onto rcca.CCA. Not relevant for macke filter_length: The length of the time window to be considered in the past for the stimulus and the responses. Can be different for stimulus and response, if a tuple is given. cca_solver: Which CCA solver to use. Options are `rcca` and `macke`(default) maxframes: int Number of frames to load in the the experiment object. Used to avoid memory and performance issues. shufflespikes: bool Whether to randomize the spikes, to validate the results exclude_allzero_spike_rows: Exclude all cells which have zero spikes for the duration of the stimulus. savedir: str Custom directory to save the figures and data files. If None, will be saved in the experiment directory under appropritate path. savefig: bool Whether to save the figures. sort_by_nspikes: bool Wheter to sort the cell weights array by the number of spikes during the stimulus. select_cells: list A list of indexes for the subset of cells to perform the analysis for. plot_first_ncells: int Number of cells to plot in the cell plots. """ if regularization is None: regularization = 0 st = OMB(exp, stim_nr, maxframes=maxframes) if filter_length is None: filter_length = st.filter_length if type(filter_length) is int: filter_length = (filter_length, filter_length) if type(savedir) is str: savedir = Path(savedir) if savedir is None: savedir = st.stim_dir / 'CCA' savedir.mkdir(exist_ok=True, parents=True) spikes = st.allspikes() nonzerospikerows = ~np.isclose(spikes.sum(axis=1), 0) # Set the mean to zero for spikes spikes -= spikes.mean(axis=1)[:, None] bgsteps = st.bgsteps if select_cells is not None: if type(select_cells) is not np.array: select_cells = np.array(select_cells) spikes = spikes[select_cells] st.nclusters = len(select_cells) # Convert to list for better string representation # np.array is printed as "array([....])" # with newline characters which is problematic in filenames select_cells = list(select_cells) # Exclude rows that have no spikes throughout if exclude_allzero_spike_rows: spikes = spikes[nonzerospikerows, :] nspikes_percell = spikes.sum(axis=1) if shufflespikes: spikes = spikeshuffler.shufflebyrow(spikes) figsavename = f'{n_components=}_{shufflespikes=}_{select_cells=}_{regularization=}_{filter_length=}_{whiten=}' # If the file length gets too long due to the list of selected cells, summarize it. if len(figsavename) > 200: figsavename = f'{n_components=}_{shufflespikes=}_select_cells={len(select_cells)}cells-index{select_cells[0]}to{select_cells[-1]}_{regularization=}_{filter_length=}_{whiten=}' #sp_train, sp_test, stim_train, stim_test = train_test_split(spikes, bgsteps) stimulus = mft.packdims(st.bgsteps, filter_length[0]) spikes = mft.packdims(spikes, filter_length[1]) if cca_solver == 'rcca': resp_comps, stim_comps, cancorrs = cca_rcca(spikes, stimulus, filter_length, n_components, regularization, whiten) # cells = np.swapaxes(spikes_res, 1, 0) # cells = cells.reshape((n_components, st.nclusters, filter_length[1])) # motionfilt_x = cca.ws[1][:filter_length[0]].T # motionfilt_y = cca.ws[1][filter_length[0]:].T elif cca_solver == 'macke': resp_comps, stim_comps, cancorrs = cca_macke(spikes, stimulus, filter_length, n_components) nsp_argsorted = np.argsort(nspikes_percell) resp_comps_sorted_nsp = resp_comps[:, nsp_argsorted, :] if sort_by_nspikes: resp_comps_toplot = resp_comps_sorted_nsp else: resp_comps_toplot = resp_comps if plot_first_ncells is not None: resp_comps_toplot = resp_comps_toplot[:, :plot_first_ncells, ...] motionfilt_r, motionfilt_theta = mft.cart2pol(stim_comps[:, 0, :], stim_comps[:, 1, :]) #%% nrows, ncols = plf.numsubplots(n_components) fig_cells, axes_cells = plt.subplots(nrows, ncols, figsize=(10, 10)) for i in range(n_components): ax = axes_cells.flat[i] im = ax.imshow(resp_comps[i, :], cmap='RdBu_r', vmin=asc.absmin(resp_comps), vmax=asc.absmax(resp_comps), aspect='auto', interpolation='nearest') ax.set_title(f'{i}') fig_cells.suptitle(f'Cells default order {shufflespikes=}') if savefig: fig_cells.savefig(savedir / f'{figsavename}_cells_default_order.pdf') plt.close(fig_cells) nsubplots = plf.numsubplots(n_components) height_list = [1, 1, 1, 3] # ratios of the plots in each component # Create a time vector for the stimulus plots t_stim = -np.arange(0, filter_length[0] * st.frame_duration, st.frame_duration)[::-1] * 1000 t_response = -np.arange(0, filter_length[1] * st.frame_duration, st.frame_duration)[::-1] * 1000 xtick_loc_params = dict(nbins=4, steps=[2, 5, 10], integer=True) nsubrows = len(height_list) height_ratios = nsubplots[0] * height_list fig, axes = plt.subplots(nrows=nsubplots[0] * nsubrows, ncols=nsubplots[1], gridspec_kw={'height_ratios': height_ratios}, figsize=(11, 10)) for row, ax_row in enumerate(axes): for col, ax in enumerate(ax_row): mode_i = int(row / nsubrows) * nsubplots[1] + col # ax.text(0.5, 0.5, f'{mode_i}') ax.set_yticks([]) # Plot motion filters if row % nsubrows == 0: ax.plot(t_stim, stim_comps[mode_i, 0, :], marker='o', markersize=1) ax.plot(t_stim, stim_comps[mode_i, 1, :], marker='o', markersize=1) if col == 0: ax.set_ylabel('Motion', rotation=0, ha='right', va='center') ax.set_ylim(stim_comps.min(), stim_comps.max()) # Draw a horizontal line for zero and prevent rescaling of x-axis xlims = ax.get_xlim() ax.hlines(0, *ax.get_xlim(), colors='k', linestyles='dashed', alpha=0.3) ax.set_xlim(*xlims) # ax.set_title(f'Component {mode_i}', fontweight='bold') ax.xaxis.set_major_locator(MaxNLocator(**xtick_loc_params)) if not mode_i == 0 or filter_length[0] == filter_length[1]: ax.xaxis.set_ticklabels([]) else: ax.tick_params(axis='x', labelsize=8) # Plot magnitude of motion elif row % nsubrows == 1: ax.plot(t_stim, motionfilt_r[mode_i, :], color='k', marker='o', markersize=1) if col == 0: ax.set_ylabel('Magnitude', rotation=0, ha='right', va='center') ax.set_ylim(motionfilt_r.min(), motionfilt_r.max()) ax.xaxis.set_ticklabels([]) ax.xaxis.set_major_locator(MaxNLocator(**xtick_loc_params)) # Plot direction of motion elif row % nsubrows == 2: ax.plot(t_stim, motionfilt_theta[mode_i, :], color='r', marker='o', markersize=1) if mode_i == 0: ax.yaxis.set_ticks([-np.pi, 0, np.pi]) ax.yaxis.set_ticklabels(['-π', 0, 'π']) ax.xaxis.set_ticklabels([]) ax.xaxis.set_major_locator(MaxNLocator(**xtick_loc_params)) # Plot cell weights elif row % nsubrows == nsubrows - 1: im = ax.imshow(resp_comps_toplot[mode_i, :], cmap='RdBu_r', vmin=asc.absmin(resp_comps), vmax=asc.absmax(resp_comps), aspect='auto', interpolation='nearest', extent=[ t_response[0], t_response[-1], 0, resp_comps_toplot.shape[1] ]) ax.xaxis.set_major_locator(MaxNLocator(**xtick_loc_params)) if row == axes.shape[0] - 1: ax.set_xlabel('Time before spike [ms]') # ax.set_xticks(np.array([0, .25, .5, .75, 1]) * cells_toplot.shape[-1]) # ax.xaxis.set_ticklabels(-np.round((ax.get_xticks()*st.frame_duration), 2)[::-1]) else: ax.xaxis.set_ticklabels([]) plf.integerticks(ax, 5, which='y') if col == 0: ax.set_ylabel( f'Cells\n{"(sorted nsp)"*sort_by_nspikes}\n{("(first " + str(plot_first_ncells)+ " cells)")*(type(plot_first_ncells) is int) }', rotation=0, ha='right', va='center') else: ax.yaxis.set_ticklabels([]) if mode_i == n_components - 1: plf.colorbar(im) # Add ticks on the right side of the plots if col == nsubplots[1] - 1 and row % nsubrows != nsubrows - 1: plf.integerticks(ax, 3, which='y') ax.yaxis.tick_right() fig.suptitle( f'CCA components of {st.exp_foldername}\n{shufflespikes=} {n_components=}\n{sort_by_nspikes=}\n' + f'{select_cells=} {regularization=} {filter_length=}') fig.subplots_adjust(wspace=0.1, hspace=0.3) if savefig: fig.savefig(savedir / f'{figsavename}_cellsandcomponents.pdf') # plt.show() plt.close(fig) #%% fig_corrs = plt.figure() plt.plot(cancorrs, 'ko') # plt.ylim([0.17, 0.24]) plt.xlabel('Component index') plt.ylabel('Correlation') plt.title(f'Cannonical correlations {shufflespikes=}') if savefig: fig_corrs.savefig(savedir / f'{figsavename}_correlation_coeffs.pdf') # plt.show() plt.close(fig_corrs) fig_nlt, axes_nlt = plt.subplots(nrows, ncols, figsize=(10, 10)) stim_comps_flatter = stim_comps[:n_components].reshape( (n_components, 2 * filter_length[0])).T resp_comps_flatter = resp_comps[:n_components].reshape( (n_components, resp_comps.shape[1] * filter_length[1])).T # from IPython.core.debugger import Pdb; ipdb=Pdb(); ipdb.set_trace() # Reshape to perform the convolution as a matrix multiplication generator_stim = stimulus @ stim_comps_flatter generator_resp = spikes @ resp_comps_flatter for i, ax in enumerate(axes_nlt.flatten()): nonlinearity, bins = nlt.calc_nonlin(generator_resp[:, i], generator_stim[:, i]) # ax.scatter(generator_stim, generator_resp, s=1, alpha=0.5, facecolor='grey') ax.plot(bins, nonlinearity, 'k') if i == 0: all_nonlinearities = np.empty((n_components, *nonlinearity.shape)) all_bins = np.empty((n_components, *bins.shape)) all_nonlinearities[i, ...] = nonlinearity all_bins[i, ...] = bins nlt_xlims = [] nlt_ylims = [] for i, ax in enumerate(axes_nlt.flatten()): xlim = ax.get_xlim() ylim = ax.get_ylim() nlt_xlims.extend(xlim) nlt_ylims.extend(ylim) nlt_maxx, nlt_minx = max(nlt_xlims), min(nlt_xlims) nlt_maxy, nlt_miny = max(nlt_ylims), min(nlt_ylims) for i, ax in enumerate(axes_nlt.flatten()): ax.set_xlim([nlt_minx, nlt_maxx]) ax.set_ylim([nlt_miny, nlt_maxy]) for i, axes_row in enumerate(axes_nlt): for j, ax in enumerate(axes_row): if i == nrows - 1: ax.set_xlabel('Generator (motion)') if j == 0: ax.set_ylabel('Generator (cells)') else: ax.yaxis.set_ticklabels([]) ax.set_xlim([nlt_minx, nlt_maxx]) ax.set_ylim([nlt_miny, nlt_maxy]) fig_nlt.suptitle(f'Nonlinearities\n{figsavename}') if savefig: fig_nlt.savefig(savedir / f'{figsavename}_nonlinearity.png') plt.close(fig_nlt) keystosave = [ 'n_components', 'resp_comps', 'stim_comps', 'motionfilt_r', 'motionfilt_theta', 'resp_comps_sorted_nsp', 'select_cells', 'regularization', 'filter_length', 'all_nonlinearities', 'all_bins', 'cca_solver' ] datadict = dict() for key in keystosave: datadict[key] = locals()[key] np.savez(savedir / figsavename, **datadict)
def OMBanalyzer(exp_name, stimnr, plotall=False, nr_bins=20): """ Analyze responses to object moving background stimulus. STA and STC are calculated. Note that there are additional functions that make use of the OMB class. This function was written before the OMB class existed """ # TODO # Add iteration over multiple stimuli exp_dir = iof.exp_dir_fixer(exp_name) exp_name = os.path.split(exp_dir)[-1] stimname = iof.getstimname(exp_dir, stimnr) parameters = asc.read_parameters(exp_name, stimnr) assert parameters['stimulus_type'] == 'objectsmovingbackground' stimframes = parameters.get('stimFrames', 108000) preframes = parameters.get('preFrames', 200) nblinks = parameters.get('Nblinks', 2) seed = parameters.get('seed', -10000) seed2 = parameters.get('objseed', -1000) stepsize = parameters.get('stepsize', 2) ntotal = int(stimframes / nblinks) clusters, metadata = asc.read_spikesheet(exp_name) refresh_rate = metadata['refresh_rate'] filter_length, frametimings = asc.ft_nblinks(exp_name, stimnr, nblinks, refresh_rate) frame_duration = np.ediff1d(frametimings).mean() frametimings = frametimings[:-1] if ntotal != frametimings.shape[0]: print(f'For {exp_name}\nstimulus {stimname} :\n' f'Number of frames specified in the parameters file ({ntotal}' f' frames) and frametimings ({frametimings.shape[0]}) do not' ' agree!' ' The stimulus was possibly interrupted during recording.' ' ntotal is changed to match actual frametimings.') ntotal = frametimings.shape[0] # Generate the numbers to be used for reconstructing the motion # ObjectsMovingBackground.cpp line 174, steps are generated in an # alternating fashion. We can generate all of the numbers at once # (total lengths is defined by stimFrames) and then assign # to x and y directions. Although there is more # stuff around line 538 randnrs, seed = randpy.gasdev(seed, ntotal * 2) randnrs = np.array(randnrs) * stepsize xsteps = randnrs[::2] ysteps = randnrs[1::2] clusterids = plf.clusters_to_ids(clusters) all_spikes = np.empty((clusters.shape[0], ntotal)) for i, (cluster, channel, _) in enumerate(clusters): spiketimes = asc.read_raster(exp_name, stimnr, cluster, channel) spikes = asc.binspikes(spiketimes, frametimings) all_spikes[i, :] = spikes # Collect STA for x and y movement in one array stas = np.zeros((clusters.shape[0], 2, filter_length)) stc_x = np.zeros((clusters.shape[0], filter_length, filter_length)) stc_y = np.zeros((clusters.shape[0], filter_length, filter_length)) t = np.arange(filter_length) * 1000 / refresh_rate * nblinks for k in range(filter_length, ntotal - filter_length + 1): x_mini = xsteps[k - filter_length + 1:k + 1][::-1] y_mini = ysteps[k - filter_length + 1:k + 1][::-1] for i, (cluster, channel, _) in enumerate(clusters): if all_spikes[i, k] != 0: stas[i, 0, :] += all_spikes[i, k] * x_mini stas[i, 1, :] += all_spikes[i, k] * y_mini # Calculate non-centered STC (Cantrell et al., 2010) stc_x[i, :, :] += all_spikes[i, k] * calc_covar(x_mini) stc_y[i, :, :] += all_spikes[i, k] * calc_covar(y_mini) eigvals_x = np.zeros((clusters.shape[0], filter_length)) eigvals_y = np.zeros((clusters.shape[0], filter_length)) eigvecs_x = np.zeros((clusters.shape[0], filter_length, filter_length)) eigvecs_y = np.zeros((clusters.shape[0], filter_length, filter_length)) bins_x = np.zeros((clusters.shape[0], nr_bins)) bins_y = np.zeros((clusters.shape[0], nr_bins)) spikecount_x = np.zeros(bins_x.shape) spikecount_y = np.zeros(bins_x.shape) generators_x = np.zeros(all_spikes.shape) generators_y = np.zeros(all_spikes.shape) # Normalize STAs and STCs with respect to spike numbers for i in range(clusters.shape[0]): totalspikes = all_spikes.sum(axis=1)[i] stas[i, :, :] = stas[i, :, :] / totalspikes stc_x[i, :, :] = stc_x[i, :, :] / totalspikes stc_y[i, :, :] = stc_y[i, :, :] / totalspikes try: eigvals_x[i, :], eigvecs_x[i, :, :] = np.linalg.eigh( stc_x[i, :, :]) eigvals_y[i, :], eigvecs_y[i, :, :] = np.linalg.eigh( stc_y[i, :, :]) except np.linalg.LinAlgError: continue # Calculate the generator signals and nonlinearities generators_x[i, :] = np.convolve(eigvecs_x[i, :, -1], xsteps, mode='full')[:-filter_length + 1] generators_y[i, :] = np.convolve(eigvecs_y[i, :, -1], ysteps, mode='full')[:-filter_length + 1] spikecount_x[i, :], bins_x[i, :] = nlt.calc_nonlin( all_spikes[i, :], generators_x[i, :], nr_bins) spikecount_y[i, :], bins_y[i, :] = nlt.calc_nonlin( all_spikes[i, :], generators_y[i, :], nr_bins) savepath = os.path.join(exp_dir, 'data_analysis', stimname) if not os.path.isdir(savepath): os.makedirs(savepath, exist_ok=True) # Calculated based on last eigenvector magx = eigvecs_x[:, :, -1].sum(axis=1) magy = eigvecs_y[:, :, -1].sum(axis=1) r_ = np.sqrt(magx**2 + magy**2) theta_ = np.arctan2(magy, magx) # To draw the vectors starting from origin, insert zeros every other element r = np.zeros(r_.shape[0] * 2) theta = np.zeros(theta_.shape[0] * 2) r[1::2] = r_ theta[1::2] = theta_ plt.polar(theta, r) plt.gca().set_xticks(np.pi / 180 * np.array([0, 90, 180, 270])) plt.title(f'Population plot for motion STAs\n{exp_name}') plt.savefig(os.path.join(savepath, 'population.svg')) if plotall: plt.show() plt.close() for i in range(stas.shape[0]): stax = stas[i, 0, :] stay = stas[i, 1, :] ax1 = plt.subplot(211) ax1.plot(t, stax, label=r'STA$_{\rm X}$') ax1.plot(t, stay, label=r'STA$_{\rm Y}$') ax1.plot(t, eigvecs_x[i, :, -1], label='Eigenvector_X 0') ax1.plot(t, eigvecs_y[i, :, -1], label='Eigenvector_Y 0') plt.legend(fontsize='x-small') ax2 = plt.subplot(4, 4, 9) ax3 = plt.subplot(4, 4, 13) ax2.set_yticks([]) ax2.set_xticklabels([]) ax3.set_yticks([]) ax2.set_title('Eigenvalues', size='small') ax2.plot(eigvals_x[i, :], 'o', markerfacecolor='C0', markersize=4, markeredgewidth=0) ax3.plot(eigvals_y[i, :], 'o', markerfacecolor='C1', markersize=4, markeredgewidth=0) ax4 = plt.subplot(2, 3, 5) ax4.plot(bins_x[i, :], spikecount_x[i, :] / frame_duration) ax4.plot(bins_y[i, :], spikecount_y[i, :] / frame_duration) ax4.set_ylabel('Firing rate [Hz]') ax4.set_title('Nonlinearities', size='small') plf.spineless([ax1, ax2, ax3, ax4], 'tr') ax5 = plt.subplot(2, 3, 6, projection='polar') ax5.plot(theta, r, color='k', alpha=.3) ax5.plot(theta[2 * i:2 * i + 2], r[2 * i:2 * i + 2], lw=3) ax5.set_xticklabels(['0', '', '', '', '180', '', '270', '']) ax5.set_title('Vector sum of X and Y STCs', size='small') plt.suptitle(f'{exp_name}\n{stimname}\n{clusterids[i]}') plt.subplots_adjust(hspace=.4) plt.savefig(os.path.join(savepath, clusterids[i] + '.svg'), bbox_inches='tight') if plotall: plt.show() plt.close() keystosave = [ 'nblinks', 'all_spikes', 'clusters', 'frame_duration', 'eigvals_x', 'eigvals_y', 'eigvecs_x', 'eigvecs_y', 'filter_length', 'magx', 'magy', 'ntotal', 'r', 'theta', 'stas', 'stc_x', 'stc_y', 'bins_x', 'bins_y', 'nr_bins', 'spikecount_x', 'spikecount_y', 'generators_x', 'generators_y', 't' ] datadict = {} for key in keystosave: datadict[key] = locals()[key] npzfpath = os.path.join(savepath, str(stimnr) + '_data') np.savez(npzfpath, **datadict)
omb_stas[i, j, :], label='OMB STA', color='k', alpha=.6, ls='dashed') if j == 0: axk.set_title('Linear filters') axnlt.set_title('Nonlinearity') axk.set_xlabel('Time before spike [ms]') axk.set_ylabel(f'{plotlabels[j]}') generator = np.convolve(kall[i, j, :], stimulus[j, :], mode='full')[:-st.filter_length + 1] nonlinearity, bins = nlt.calc_nonlin(all_spikes[i, :], generator, nr_bins=40) axnlt.plot(bins, nonlinearity / st.frame_duration) axnlt.set_xlabel('Stimulus projection') axnlt.set_ylabel('Firing rate [spikes/s]') plt.tight_layout() plt.subplots_adjust(top=.80) fig.suptitle( f'{st.exp_foldername} \n {st.stimname} \n' f'{st.clids[i]} {glmlabel} mu: {muall[i]:4.2f} ' f'corr: {cross_corrs[i]:4.2f} nsp: {all_spikes[i, :].sum():5.0f}') plt.show() fig.savefig(os.path.join(savepath, f'{st.clids[i]}.svg')) plt.close()
# Euclidian norm motionstas_norm = motionstas / np.sqrt((motionstas**2).sum(axis=-1))[:, :, None] bgsteps = st.bgsteps / np.sqrt(st.bgsteps.var()) rw = asc.rolling_window(bgsteps, st.filter_length) steps_proj = np.einsum('abc,bdc->ad', motionstas_norm, rw) nbins = 15 bins = np.zeros((nrcells, nbins)) nlts = np.zeros((bins.shape)) for i in range(nrcells): nlts[i, :], bins[i, :] = nlt.calc_nonlin(all_spikes[i, :], steps_proj[i, :], nr_bins=nbins) nlts *= st.refresh_rate #%% pd = steps_proj > 0.5 npd = steps_proj < -0.5 pd_spikes = all_spikes.copy() npd_spikes = all_spikes.copy() # Exclude spikes that are not in desired direction to zero pd_spikes[~pd] = 0 npd_spikes[~npd] = 0 #%%
generator = np.convolve(stim, linear_filter[::-1], 'full')[:-filter_length+1] firing_rate = nonlinearity(generator) spikes = np.random.poisson(firing_rate) #%% Recovery sta = np.zeros(filter_length) for i, spike in enumerate(spikes): if i >= filter_length: sta += stim[i-filter_length+1:i+1]*spike sta /= spikes.sum() plt.plot(linear_filter, label='Filter') plt.plot(sta, label='Spike-triggered average') plt.legend(fontsize='x-small') plt.show() #%% import nonlinearity as nlt regenerator = np.convolve(sta[::-1], stim, 'full')[:-filter_length+1] nonlin, bins = nlt.calc_nonlin(spikes, regenerator) binsold, nonlinold = nlt._calc_nonlin(spikes, regenerator) plt.plot(bins, nonlin, label='new') plt.plot(binsold, nonlinold, label='old') plt.plot(bins, nonlinearity(bins), label='real_nonlinearity') plt.legend()