def video( input_file: Path = typer.Argument( ..., file_okay=True, dir_okay=False, ), output_file: Path = typer.Option( "./output/norfair-test.mp4", file_okay=True, dir_okay=False, ), max_distance: int = typer.Option(60), debug: bool = typer.Option(False), ): """ Runs vehicle detection on frames of a video. Outputs a directory of images ready for processing with the ``images`` command. XXX not actually ready yet, I'm currently testing `norfair` package which tracks detections through time so I can be smart about outputing only the largest and most clear frame of a vehicle rather than many similiar frames of the same vehicle. """ yolo_net, yolo_labels, yolo_colors, yolo_layers = load_yolo_net() video = Video(input_path=str(input_file), output_path=str(output_file)) tracker = Tracker( distance_function=euclidean_distance, distance_threshold=max_distance, ) for frame in video: detections = detect_objects(yolo_net, yolo_labels, yolo_layers, yolo_colors, frame) detections = list( filter(lambda d: d["label"] in VEHICLE_CLASSES, detections)) detections = [ Detection(get_centroid(box, frame.shape[0], frame.shape[1]), data=box) for box in detections ] tracked_objects = tracker.update(detections=detections) import pdb pdb.set_trace() norfair.draw_points(frame, detections) norfair.draw_tracked_objects(frame, tracked_objects) video.write(frame)
y2 = yolo_box[3] * img_height return np.array([(x1 + x2) / 2, (y1 + y2) / 2]) parser = argparse.ArgumentParser(description="Track human poses in a video.") parser.add_argument("files", type=str, nargs="+", help="Video files to process") args = parser.parse_args() model = YOLO("yolov4.pth") # set use_cuda=False if using CPU for input_path in args.files: video = Video(input_path=input_path) tracker = Tracker( distance_function=euclidean_distance, distance_threshold=max_distance_between_points, ) for frame in video: detections = model(frame) detections = [ Detection(get_centroid(box, frame.shape[0], frame.shape[1]), data=box) for box in detections if box[-1] == 2 ] tracked_objects = tracker.update(detections=detections) norfair.draw_points(frame, detections) norfair.draw_tracked_objects(frame, tracked_objects) video.write(frame)