def test_normality(): # Generate some 4-d random uniform data. # The first 3 dimensions are like voxels, the last like time. np.random.seed(159) sim_resids = np.random.rand(2, 2, 2, 200) # Force one of the time courses to be standard normal. sim_resids[0,0,0] = np.random.randn(200) # Do Shaprio-Wilk and Kruskal-Wallis sw_3d = check_sw(sim_resids) kw_3d = check_kw(sim_resids) assert(sw_3d[0,0,0] > 0.05) assert(sw_3d[1,0,0] < 0.05) assert(kw_3d[0,0,0] > 0.05)
def test_normality(): # Generate some 4-d random uniform data. # The first 3 dimensions are like voxels, the last like time. np.random.seed(159) sim_resids = np.random.rand(2, 2, 2, 200) # Force one of the time courses to be standard normal. sim_resids[0, 0, 0] = np.random.randn(200) # Do Shaprio-Wilk and Kruskal-Wallis sw_3d = check_sw(sim_resids) kw_3d = check_kw(sim_resids) assert (sw_3d[0, 0, 0] > 0.05) assert (sw_3d[1, 0, 0] < 0.05) assert (kw_3d[0, 0, 0] > 0.05)
def test_normality(): # Generate some 4-d random uniform data. # The first 3 dimensions are like voxels, the last like time. np.random.seed(159) sim_resids = np.random.rand(2, 2, 2, 200) # Force one of the time courses to be standard normal. sim_resids[0,0,0] = np.random.randn(200) # Do Shaprio-Wilk. sw_3d = check_sw(sim_resids) # 4-d residuals, 3-d p-values sw_1d = check_sw_masked(sim_resids.reshape((-1, sim_resids.shape[-1]))) # 2-d residuals, 1-d p-values # Do Kruskal-Wallis. kw_3d = check_kw(sim_resids) assert(sw_3d[0,0,0] > 0.05) assert(sw_3d[1,0,0] < 0.05) # Two Shaprio-Wilk functions should do the same thing over arrays of different dimensions. assert(sw_3d[0,0,0] == sw_1d[0]) assert(kw_3d[0,0,0] > 0.05)
def test_normality(): # Generate some 4-d random uniform data. # The first 3 dimensions are like voxels, the last like time. np.random.seed(159) sim_resids = np.random.rand(2, 2, 2, 200) # Force one of the time courses to be standard normal. sim_resids[0, 0, 0] = np.random.randn(200) # Do Shaprio-Wilk. sw_3d = check_sw(sim_resids) # 4-d residuals, 3-d p-values sw_1d = check_sw_masked(sim_resids.reshape( (-1, sim_resids.shape[-1]))) # 2-d residuals, 1-d p-values # Do Kruskal-Wallis. kw_3d = check_kw(sim_resids) assert (sw_3d[0, 0, 0] > 0.05) assert (sw_3d[1, 0, 0] < 0.05) # Two Shaprio-Wilk functions should do the same thing over arrays of different dimensions. assert (sw_3d[0, 0, 0] == sw_1d[0]) assert (kw_3d[0, 0, 0] > 0.05)