def forecaster_params_mnist(): return [[ OrderedDict({ layer[0]: [layer[1], layer[2], layer[3], layer[4], layer[5]] for layer in sub }) for sub in cfg.MODEL.FORECASTER.UPSAMPLE ], [ TrajGRU( input_channel=cfg.MODEL.FORECASTER.RNN_BLOCKS.NUM_INPUT[i], num_filter=cfg.MODEL.FORECASTER.RNN_BLOCKS.NUM_FILTER[i], b_h_w=(batch_size, cfg.MODEL.FORECASTER.RNN_BLOCKS.HW[i][0], cfg.MODEL.FORECASTER.RNN_BLOCKS.HW[i][1]), zoneout=0.0, L=cfg.MODEL.FORECASTER.RNN_BLOCKS.L[i], i2h_kernel=cfg.MODEL.FORECASTER.RNN_BLOCKS.I2H_KERNEL[i], i2h_stride=cfg.MODEL.FORECASTER.RNN_BLOCKS.I2H_STRIDE[i], i2h_pad=cfg.MODEL.FORECASTER.RNN_BLOCKS.I2H_PAD[i], h2h_kernel=cfg.MODEL.FORECASTER.RNN_BLOCKS.H2H_KERNEL[i], h2h_dilate=cfg.MODEL.FORECASTER.RNN_BLOCKS.H2H_DILATE[i], act_type=activation(cfg.MODEL.RNN_ACT_TYPE, negative_slope=0.2, inplace=True)) for i in range(len(cfg.MODEL.FORECASTER.RNN_BLOCKS.NUM_FILTER)) ]]
'valid_datetime.pkl') __C.HKO_SORTED_DAYS_PATH = os.path.join(__C.HKO_DATA_BASE_PATH, 'sorted_day.pkl') __C.HKO_RAINY_TRAIN_DAYS_PATH = os.path.join(__C.HKO_DATA_BASE_PATH, 'hko7_rainy_train_days.txt') __C.HKO_RAINY_VALID_DAYS_PATH = os.path.join(__C.HKO_DATA_BASE_PATH, 'hko7_rainy_valid_days.txt') __C.HKO_RAINY_TEST_DAYS_PATH = os.path.join(__C.HKO_DATA_BASE_PATH, 'hko7_rainy_test_days.txt') __C.HKO_PD = edict() __C.HKO_PD.ALL = os.path.join(__C.HKO_PD_BASE_PATH, 'hko7_all.pkl') __C.HKO_PD.ALL_09_14 = os.path.join(__C.HKO_PD_BASE_PATH, 'hko7_all_09_14.pkl') __C.HKO_PD.ALL_15 = os.path.join(__C.HKO_PD_BASE_PATH, 'hko7_all_15.pkl') __C.HKO_PD.RAINY_TRAIN = os.path.join(__C.HKO_PD_BASE_PATH, 'hko7_rainy_train.pkl') __C.HKO_PD.RAINY_VALID = os.path.join(__C.HKO_PD_BASE_PATH, 'hko7_rainy_valid.pkl') __C.HKO_PD.RAINY_TEST = os.path.join(__C.HKO_PD_BASE_PATH, 'hko7_rainy_test.pkl') __C.HKO.ITERATOR = edict() __C.HKO.ITERATOR.WIDTH = 480 __C.HKO.ITERATOR.HEIGHT = 480 __C.HKO.ITERATOR.FILTER_RAINFALL = True # Whether to discard part of the rainfall, has a denoising effect __C.HKO.ITERATOR.FILTER_RAINFALL_THRESHOLD = 0.28 # All the pixel values that are smaller than round(threshold * 255) will be discarded __C.MODEL = edict() from nowcasting.models.model import activation __C.MODEL.RNN_ACT_TYPE = activation('leaky', negative_slope=0.2, inplace=True)