tar_y = Tensor(v) mse = MSE_Loss() for e in range(0): y = conv2d.forward(input, k, kx=kx, ky=ky, kz=kz, channel=channel, stride=(sx, sy, sz)) loss = mse(y, tar_y, (0, 1, 2, 3)) loss.backward() k.value -= k.gradient * 0.000001 #print(k.gradient) k.zero_grad() #input.value -= input.gradient * 0.001 #print(input.gradient) #input.zero_grad() print(e, loss.item()) print(tar_y - y) print(input) print(k) from np.ad.operation import conv2d_transpose cx = 2 cy = 2 cz = 2
[24.0, 32.0], [48.0, 56.0]]) tar.append([[24.0, 32.0], [48.0, 56.0], [48.0, 64.0], [56.0, 112.0]]) target = Tensor(np.array(tar)) mse = MSE_Loss() for e in range(30000): y = conv1d.forward(input, k, kx=2, ky=2, channel=2, stride=(1, 1)) loss = mse(y, target, (0, 1, 2)) loss.backward() k.value -= k.gradient * 0.0001 #print(k.gradient) k.zero_grad() input.value -= input.gradient * 0.001 #print(input.gradient) input.zero_grad() print(loss.item()) print(y) print(input) print(k) from np.ad.operation import conv1d_transpose inp = [] inp.append([[1.0, 1.0, 1.0],