flag_bootstrapped = True if i % 1000 == 0: print "processed %s jobs so far" % i i = 0 for i in range(len(X)): env.start(job_process(i)) i = i + 1 simulate(env) if arguments['--interactive'] == True: print(arguments) from IPython import embed embed() if tool == "sgd": array_to_file( pred, arguments["<output_folder>"] + "/prediction_%s_%s_%s" % (tool, loss, penalty)) elif tool == "passive-aggressive": array_to_file( pred, arguments["<output_folder>"] + "/prediction_%s_%s" % (tool, loss)) #interactive? if arguments['--interactive'] == True: print(arguments) from IPython import embed embed()
model.partial_fit(np.array([j]),np.array([yf[i]])) #print('5: time is %s,i= %s' % (env.now, i)) if not flag_bootstrapped: flag_bootstrapped=True if i % 1000==0: print "processed %s jobs so far" %i i=0 for i in range(len(X)): env.start(job_process(i)) i=i+1 simulate(env) if arguments['--interactive']==True: print(arguments) from IPython import embed embed() if tool=="sgd": array_to_file(pred,arguments["<output_folder>"]+"/prediction_%s_%s_%s" %(tool,loss,penalty)) elif tool=="passive-aggressive": array_to_file(pred,arguments["<output_folder>"]+"/prediction_%s_%s" %(tool,loss)) #interactive? if arguments['--interactive']==True: print(arguments) from IPython import embed embed()
yield env.timeout(wait_time + run_time) #print('4: time is %s,i= %s' % (env.now, i)) model.partial_fit(np.array([j]), np.array([yf[i]])) #print('5: time is %s,i= %s' % (env.now, i)) if not flag_bootstrapped: flag_bootstrapped = True if i % 1000 == 0: print "processed %s jobs so far" % i i = 0 for i in range(len(X)): env.start(job_process(i)) i = i + 1 simulate(env) if arguments['--interactive'] == True: print(arguments) from IPython import embed embed() array_to_file(pred, "prediction_sgd") #interactive? if arguments['--interactive'] == True: print(arguments) from IPython import embed embed()
yield env.timeout(wait_time+run_time) #print('4: time is %s,i= %s' % (env.now, i)) model.partial_fit(np.array([j]),np.array([yf[i]])) #print('5: time is %s,i= %s' % (env.now, i)) if not flag_bootstrapped: flag_bootstrapped=True if i % 1000==0: print "processed %s jobs so far" %i i=0 for i in range(len(X)): env.start(job_process(i)) i=i+1 simulate(env) if arguments['--interactive']==True: print(arguments) from IPython import embed embed() array_to_file(pred,"prediction_sgd") #interactive? if arguments['--interactive']==True: print(arguments) from IPython import embed embed()