Example #1
0
 def test_log_prob(self):
     batch_size = 10
     input_shape = [2, 3, 4]
     context_shape = [5, 6]
     flow = base.Flow(
         transform=transforms.AffineScalarTransform(scale=2.0),
         distribution=distributions.StandardNormal(input_shape),
     )
     inputs = torch.randn(batch_size, *input_shape)
     maybe_context = torch.randn(batch_size, *context_shape)
     for context in [None, maybe_context]:
         with self.subTest(context=context):
             log_prob = flow.log_prob(inputs, context=context)
             self.assertIsInstance(log_prob, torch.Tensor)
             self.assertEqual(log_prob.shape, torch.Size([batch_size]))
Example #2
0
 def test_transform_to_noise(self):
     batch_size = 10
     context_size = 20
     shape = [2, 3, 4]
     context_shape = [5, 6]
     flow = base.Flow(
         transform=transforms.AffineScalarTransform(scale=2.0),
         distribution=distributions.StandardNormal(shape),
     )
     inputs = torch.randn(batch_size, *shape)
     maybe_context = torch.randn(context_size, *context_shape)
     for context in [None, maybe_context]:
         with self.subTest(context=context):
             noise = flow.transform_to_noise(inputs, context=context)
             self.assertIsInstance(noise, torch.Tensor)
             self.assertEqual(noise.shape, torch.Size([batch_size] + shape))
Example #3
0
 def test_sample_and_log_prob(self):
     num_samples = 10
     input_shape = [2, 3, 4]
     flow = base.Flow(
         transform=transforms.AffineScalarTransform(scale=2.0),
         distribution=distributions.StandardNormal(input_shape),
     )
     samples, log_prob_1 = flow.sample_and_log_prob(num_samples)
     log_prob_2 = flow.log_prob(samples)
     self.assertIsInstance(samples, torch.Tensor)
     self.assertIsInstance(log_prob_1, torch.Tensor)
     self.assertIsInstance(log_prob_2, torch.Tensor)
     self.assertEqual(samples.shape,
                      torch.Size([num_samples] + input_shape))
     self.assertEqual(log_prob_1.shape, torch.Size([num_samples]))
     self.assertEqual(log_prob_2.shape, torch.Size([num_samples]))
     self.assertEqual(log_prob_1, log_prob_2)
Example #4
0
 def test_sample_and_log_prob_with_context(self):
     num_samples = 10
     context_size = 20
     input_shape = [2, 3, 4]
     context_shape = [5, 6]
     flow = base.Flow(
         transform=transforms.AffineScalarTransform(scale=2.0),
         distribution=distributions.StandardNormal(input_shape),
     )
     context = torch.randn(context_size, *context_shape)
     samples, log_prob = flow.sample_and_log_prob(num_samples,
                                                  context=context)
     self.assertIsInstance(samples, torch.Tensor)
     self.assertIsInstance(log_prob, torch.Tensor)
     self.assertEqual(samples.shape,
                      torch.Size([context_size, num_samples] + input_shape))
     self.assertEqual(log_prob.shape,
                      torch.Size([context_size, num_samples]))
Example #5
0
 def test_sample(self):
     num_samples = 10
     context_size = 20
     input_shape = [2, 3, 4]
     context_shape = [5, 6]
     flow = base.Flow(
         transform=transforms.AffineScalarTransform(scale=2.0),
         distribution=distributions.StandardNormal(input_shape),
     )
     maybe_context = torch.randn(context_size, *context_shape)
     for context in [None, maybe_context]:
         with self.subTest(context=context):
             samples = flow.sample(num_samples, context=context)
             self.assertIsInstance(samples, torch.Tensor)
             if context is None:
                 self.assertEqual(samples.shape,
                                  torch.Size([num_samples] + input_shape))
             else:
                 self.assertEqual(
                     samples.shape,
                     torch.Size([context_size, num_samples] + input_shape),
                 )