def _setup_net(self, saved_vars_dict): model_output = basic_net(self.cnn_net, self.data_batches, self.config.num_classes, False) self.output = tf.reshape(model_output, (-1, ), self.OUTPUT_NODE_NAME) assign_ops = assign_vars(self._vars(), saved_vars_dict) self.initializer = tf.group(*assign_ops, name=self.INITIALIZER_NODE_NAME)
def _setup_net(self, saved_vars_dict): self.length_output, self.numbers_output = nsr_net( self.cnn_net, self.data_batches, self.config.max_number_length, self.is_training) self.output = stack_output(self.max_number_length, self.length_output, self.numbers_output, name='output') assign_ops = assign_vars(self._vars(), saved_vars_dict) self.initializer = tf.group(*assign_ops, name='initializer')
def _setup_net(self, saved_vars_dict): with self.cnn_net.variable_scope([self.data_batches]) as vs: collection_name = self.cnn_net.end_points_collection_name(vs) net_out, _ = self.cnn_net.cnn_layers(self.data_batches, vs, collection_name, is_training=self.is_training) self.output = tf.reshape( net_out, [H * W * (self.config.num_classes + 5) * self.max_number_length], name=YOLOToExportModel.OUTPUT_NODE_NAME) _, self.output_boxes, self.output_classes, self.output_classes_probs = \ build_export_output(net_out, H, W, self.max_number_length, self.config.num_classes, self.config.threshold) self.output_boxes = tf.identity(self.output_boxes, name='output_boxes') self.output_classes = tf.identity(self.output_classes, 'output_classes') self.output_classes_probs = tf.identity(self.output_classes_probs, 'output_classes_probs') assign_ops = assign_vars(self._vars(), saved_vars_dict) self.initializer = tf.group(*assign_ops, name='initializer')