Example #1
0
def rejectflat(lista, _interactive):

    from numpy import where, size
    from ntt.util import display_image
    from pyraf import iraf

    iraf.images(_doprint=0)
    import os
    import string

    listone = []
    for img in lista:
        dataimg = pyfits.open(img)[0].data
        numberpixels = size(dataimg)
        indices = where(dataimg > 60000)
        numbersaturated = size(dataimg[indices])
        indices2 = where(dataimg < 1000)
        numberlow = size(dataimg[indices2])
        if 100 * float(numbersaturated) / float(numberpixels) <= 5 and \
                100 * float(numberlow) / float(numberpixels) <= 10:
            listone.append(img)
    listgood = []
    if _interactive:
        for img in listone:
            aa, bb, cc = display_image(img, 1, '', '', False)
            titolo, result = iraf.imstat(img, Stdout=1)
            print titolo[1:]
            print result
            answ = 'nn'
            while answ not in ['g', 'G', 'b', 's']:
                answ = raw_input('good/bad  [[g]/b/G(all good)/s(stop)]? ')
                if not answ:
                    answ = 'g'
                if answ not in ['g', 'G', 'b', 's']:
                    print 'warning: value not valid, try again'
            if answ == 'g':
                listgood.append(img)
            elif answ == 'G':
                listgood = listone
                break
            elif answ == 's':
                break
    else:
        listgood = listone
    return listgood
Example #2
0
def makeillumination(lista,flatfield):#,outputfile,illum_frame):
    import os,glob,string,re
    from astropy.io import fits as pyfits
    import ntt
    from ntt.util import readhdr, readkey3, delete, display_image, defsex,  name_duplicate, correctcard
    from numpy import compress, array, argmax, argmin, min, argsort, float32
    import datetime
    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    _date = readkey3(readhdr(lista[0]), 'date-night')
    _filter = readkey3(readhdr(lista[0]), 'filter')
    illum_frame = name_duplicate(
        lista[0], 'illum_' + _date + '_' + _filter + '_' + str(MJDtoday), '')
    from pyraf import iraf
    iraf.images(_doprint=0)
    iraf.imutil(_doprint=0)
    iraf.utilities(_doprint=0)
    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    iraf.generic(_doprint=0)
    toforget = ['digiphot.daophot', 'imutil.imarith',
                'image', 'utilities.surfit']
    for t in toforget:
        iraf.unlearn(t)
    n = len(lista)
#   start loop to read image names from the input file
    lista1 = []
    iraf.ccdred.verbose = 'no'
    ff = open('templist.lst', 'w')
    for i in range(0, len(lista)):
        ff.write('C' + lista[i] + '\n')
        delete('C' + lista[i])
        delete('C' + re.sub('.fits', '_sub.fits', lista[i]))
        ntt.sofiphotredudef.crosstalk(lista[i], 'C' + lista[i])
        iraf.noao.imred.ccdred.ccdproc('C' + lista[i], output='', overscan="no", trim="yes", ccdtype='', darkcor='no', fixpix='no', zerocor="no", flatcor='yes',
                                       illumco='no', trimsec='[1:1024,1:1007]', biassec='', flat=flatfield, illum='')
        correctcard('C' + lista[i])
        lista1.append('C' + lista[i])
    ff.close()
    print '\n### prereducing STD frames to compute illumination correction ........'
    lista2, skyfile = ntt.sofiphotredudef.skysub(lista1, readkey3(
        readhdr(lista1[0]), 'ron'), readkey3(readhdr(lista1[0]), 'gain'), True)
    lista2 = ntt.sofiphotredudef.sortbyJD(lista2)
    print '\n### use x on the star and q  to continue....'
    display_image(lista2[0], 2, '', '', False)
    delete('tmpone.coo')
    iraf.image.tv.imexamine(lista2[0], 2, logfile='tmpone.coo',
                            keeplog='yes', xformat='', yformat='', wcs='logical')
    iraf.tvmark(2, 'tmpone.coo', mark="circle", number='yes',
                label='no', radii=8, nxoffse=5, nyoffse=5, color=204, txsize=2)
    xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
    x0, y0 = string.split(xycoo[0])
    x0 = float(x0)
    y0 = float(y0)
    xcum0 = readkey3(readhdr(lista2[0]), 'xcum')
    ycum0 = readkey3(readhdr(lista2[0]), 'ycum')
    iraf.digiphot(_doprint=0)
    iraf.daophot(_doprint=0)
    iraf.noao.digiphot.daophot.datapars.datamin = -1000
    iraf.noao.digiphot.daophot.datapars.datamax = 60000
    iraf.noao.digiphot.daophot.daopars.function = 'gauss'
    iraf.noao.digiphot.daophot.photpars.zmag = 0
    namesex = defsex('default.sex')
    for i in range(0, len(lista2)):
        j = i + 1
        xcum = readkey3(readhdr(lista2[i]), 'xcum')
        ycum = readkey3(readhdr(lista2[i]), 'ycum')
        xx = x0 - xcum0 + xcum
        yy = y0 - ycum0 + ycum
        # sex objects
        os.system('sex ' + lista2[i] + ' -c ' + namesex + '>  _logsex')
        delete('_logsex')
        xpix = iraf.proto.fields('detections.cat', fields='2', Stdout=1)
        ypix = iraf.proto.fields('detections.cat', fields='3', Stdout=1)
        cm = iraf.proto.fields('detections.cat', fields='4', Stdout=1)
        cm = compress((array(xpix) != ''), array(cm, float))
        ypix = compress((array(xpix) != ''), array(ypix, float))
        xpix = compress((array(xpix) != ''), array(xpix, float))
        if len(xpix) > 300:
            num = 300
        else:
            num = len(xpix) - 1
        xpix = xpix[argsort(cm)][0:num]
        ypix = ypix[argsort(cm)][0:num]
        distance = (ypix - yy)**2 + (xpix - xx)**2
        xx1, yy1 = xpix[argmin(distance)], ypix[argmin(distance)]
        f = open('tmpone.coo', 'w')
        f.write(str(xx1) + ' ' + str(yy1) + '\n')
        f.close()
        display_image(lista2[i], 1, '', '', False)
        iraf.tvmark(1, 'tmpone.coo', mark="circle", number='yes',
                    label='no', radii=8, nxoffse=5, nyoffse=5, color=204, txsize=2)
        answ = 'n'
        while answ != 'y':
            answ = raw_input('selected the right one [[y]/n] ?')
            if not answ:
                answ = 'y'
            if answ in ['y', 'YES', 'yes', 'Y']:
                print lista2[i]
                delete('pippo.' + str(j) + '.mag')
                gggg = iraf.digiphot.daophot.phot(
                    lista2[i], "tmpone.coo", output="pippo." + str(j) + ".mag", verify='no', interac='no', Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'
            else:
                print '\n### select the std star'
                display_image(lista2[i], 1, '', '', False)
                iraf.image.tv.imexamine(lista2[
                                        i], 1, logfile='tmpone.coo', keeplog='yes', xformat='', yformat='', wcs='logical')
                xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
                x2, y2 = string.split(xycoo[0])
                f = open('tmpone.coo', 'w')
                f.write(str(x2) + ' ' + str(y2) + '\n')
                f.close()
                delete('pippo.' + str(j) + '.mag')
                print '###### new selection ' + str(x2), str(y2)
                gggg = iraf.digiphot.daophot.phot(
                    lista2[i], "tmpone.coo", output='pippo.' + str(j) + '.mag', verify='no', interac='no', Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'

    os.system('ls pippo.*.mag > tempmag.lst')
    tmptbl0 = iraf.txdump(textfile="@tempmag.lst",
                          fields="XCENTER,YCENTER,FLUX", expr='yes', Stdout=1)
    ff = open('magnitudini', 'w')
    for i in tmptbl0:
        ff.write(i + '\n')
    ff.close()
#   delete the temporary images and files
    delete("temp*.fits")
    delete('temp*.lst')
    delete(illum_frame)
    print '\n### fitting the illumination surface...'
    aaa = iraf.utilities.surfit('magnitudini', image=illum_frame, function="polynomial",
                                xorder=2, yorder=2, xterms="full", ncols=1024, nlines=1024, Stdout=1)
    iraf.noao.imred.generic.normalize(illum_frame)
    correctcard(lista[0])
    data, hdr = pyfits.getdata(illum_frame, 0, header=True)
    data0, hdr0 = pyfits.getdata(lista[0], 0, header=True)
    delete(illum_frame)
    pyfits.writeto(illum_frame, float32(data), hdr0)
    flatfield0 = string.split(flatfield, '/')[-1]
    ntt.util.updateheader(
        illum_frame, 0, {'MKILLUM': [flatfield0, 'flat field']})
    display_image(illum_frame, 1, '', '', False)
    for i in range(0, len(lista)):  # in lista:
        img = lista[i]
        delete('pippo.' + str(i) + '.mag')
        delete('C' + img)
        delete('C' + re.sub('.fits', '_sky.fits', img))
#    delete('C*.fits.mag.1')
#    iraf.hedit(illum_frame,'MKILLUM','Illum. corr. created '+flatfield,add='yes',update='yes',verify='no')
    return illum_frame
Example #3
0
def doflatsofi(flats, _doflat, illum, _output):
    # print "LOGX:: Entering `doflatsofi` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import display_image, delete, searchflat, name_duplicate
    from pyraf import iraf
    import glob
    import string
    onofflimit = {'J': 1000, 'H': 1000, 'Ks': 5000}
    masklimit = {'J': {'ON': 1000, 'OFF': 30}, 'H': {
        'ON': 1000, 'OFF': 40}, 'Ks': {'ON': 1000, 'OFF': 1000}}
    if flats and _doflat:
        listaflat = []
        for _filter in flats:
            for ID in flats[_filter]:
                images = flats[_filter][ID]
                if len(images) == 8:
                    mflat = makeflat(images)
                    listaflat.append(mflat)
                    display_image(mflat, 1, '', '', False)
                    raw_input('go on ')
                elif len(images) != 8:  # % 8 == 0:
                    print '\n###  to compute a flat field you need a sequence of 8 calibration files in the following orders:'
                    print 'OFF  OFFMASK  ONMASK  ON  ON   ONMASK   OFFMASK     OFF\n'
                    print len(images), _filter, ID
                    tipo = ['OFF', 'OFFMASK', 'ONMASK', 'ON',
                            'ON', 'ONMASK', 'OFFMASK', 'OFF']
                    listtmp = []
                    ii = 0
                    nn = 0
                    for img in images:
                        onoffvalue = float(string.split(iraf.imstat(
                            img + '[500:600,900:1000]', Stdout=1)[1])[2])
                        maskvalue = float(string.split(iraf.imstat(
                            img + '[100:200,900:1000]', Stdout=1)[1])[2])
                        if onoffvalue >= onofflimit[_filter]:
                            onoff = 'ON'
                        else:
                            onoff = 'OFF'
                        if maskvalue >= masklimit[_filter][onoff]:
                            mask = 'none'
                        else:
                            mask = 'MASK'
#                        display_image(img,1,'','',False)
                        print onoff, mask, onoffvalue, maskvalue, img, tipo[nn]
                    for img in images:
                        onoffvalue = float(string.split(iraf.imstat(
                            img + '[500:600,900:1000]', Stdout=1)[1])[2])
                        maskvalue = float(string.split(iraf.imstat(
                            img + '[100:200,900:1000]', Stdout=1)[1])[2])
                        if onoffvalue >= onofflimit[_filter]:
                            onoff = 'ON'
                        else:
                            onoff = 'OFF'
                        if maskvalue >= masklimit[_filter][onoff]:
                            mask = 'none'
                        else:
                            mask = 'MASK'
                        display_image(img, 1, '', '', False)
                        print onoff, mask, onoffvalue, maskvalue, img, tipo[nn]
                        answ = raw_input('ok  [[y]/n/r/s] ? ')
                        if not answ:
                            answ = 'y'
                        if answ == 'y':
                            listtmp.append(img)
                            ii = ii + 1
                            nn = nn + 1
                            if len(listtmp) == 8:
                                print '### number images selected: ', str(len(listtmp))
                                mflat = ntt.soficalibdef.makeflat(listtmp)
                                listaflat.append(mflat)
                                display_image(mflat, 1, '', '', False)
                                nn = 0
                                listtmp = []
                        elif answ == 'r':
                            listtmp = []
                            ii = 0
                            nn = 0
                        elif answ == 's':
                            break
                        else:
                            print len(images), _filter, ID
                        print '### number images selected: ', str(len(listtmp))
    else:
        listaflat = flats
    listaillum = []
    if illum:
        for _filter in illum:
            for ID in illum[_filter]:
                images = illum[_filter][ID]
                flatfield = searchflat(images[0], listaflat)[0]
                if flatfield:
                    illum_frame = ntt.soficalibdef.makeillumination(
                        images, flatfield)
                    listaillum.append(illum_frame)
                else:
                    print 'flat field not found'

        for img in listaflat:
            try:
                ntt.util.phase3header(img)  # phase 3 definitions
                ntt.util.updateheader(
                    img, 0, {'BUNIT': ['ADU', 'pixel units(ADU,electrons)']})
                ntt.util.updateheader(
                    img, 0, {'FILETYPE': [31202, 'flat field']})
            except:
                print '\n### problems with phase 3 definitions'

        for img in listaillum:
            try:
                ntt.util.phase3header(img)  # phase 3 definitions
                ntt.util.updateheader(
                    img, 0, {'BUNIT': ['ADU', 'pixel units(ADU,electrons)']})
                ntt.util.updateheader(
                    img, 0, {'FILETYPE': [31213, 'illum corr  frames']})
            except:
                print '\n### problems with phase 3 definitions'
    return listaflat, listaillum
Example #4
0
def doflatsofi(flats, _doflat, illum, _output):
    # print "LOGX:: Entering `doflatsofi` method/function in %(__file__)s" %
    # globals()
    import ntt
    from ntt.util import display_image, delete, searchflat, name_duplicate
    from pyraf import iraf
    import glob
    import string
    onofflimit = {'J': 1000, 'H': 1000, 'Ks': 5000}
    masklimit = {
        'J': {
            'ON': 1000,
            'OFF': 30
        },
        'H': {
            'ON': 1000,
            'OFF': 40
        },
        'Ks': {
            'ON': 1000,
            'OFF': 1000
        }
    }
    if flats and _doflat:
        listaflat = []
        for _filter in flats:
            for ID in flats[_filter]:
                images = flats[_filter][ID]
                if len(images) == 8:
                    mflat = makeflat(images)
                    listaflat.append(mflat)
                    display_image(mflat, 1, '', '', False)
                    raw_input('go on ')
                elif len(images) != 8:  # % 8 == 0:
                    print '\n###  to compute a flat field you need a sequence of 8 calibration files in the following orders:'
                    print 'OFF  OFFMASK  ONMASK  ON  ON   ONMASK   OFFMASK     OFF\n'
                    print len(images), _filter, ID
                    tipo = [
                        'OFF', 'OFFMASK', 'ONMASK', 'ON', 'ON', 'ONMASK',
                        'OFFMASK', 'OFF'
                    ]
                    listtmp = []
                    ii = 0
                    nn = 0
                    for img in images:
                        onoffvalue = float(
                            string.split(
                                iraf.imstat(img + '[500:600,900:1000]',
                                            Stdout=1)[1])[2])
                        maskvalue = float(
                            string.split(
                                iraf.imstat(img + '[100:200,900:1000]',
                                            Stdout=1)[1])[2])
                        if onoffvalue >= onofflimit[_filter]:
                            onoff = 'ON'
                        else:
                            onoff = 'OFF'
                        if maskvalue >= masklimit[_filter][onoff]:
                            mask = 'none'
                        else:
                            mask = 'MASK'
#                        display_image(img,1,'','',False)
                        print onoff, mask, onoffvalue, maskvalue, img, tipo[nn]
                    for img in images:
                        onoffvalue = float(
                            string.split(
                                iraf.imstat(img + '[500:600,900:1000]',
                                            Stdout=1)[1])[2])
                        maskvalue = float(
                            string.split(
                                iraf.imstat(img + '[100:200,900:1000]',
                                            Stdout=1)[1])[2])
                        if onoffvalue >= onofflimit[_filter]:
                            onoff = 'ON'
                        else:
                            onoff = 'OFF'
                        if maskvalue >= masklimit[_filter][onoff]:
                            mask = 'none'
                        else:
                            mask = 'MASK'
                        display_image(img, 1, '', '', False)
                        print onoff, mask, onoffvalue, maskvalue, img, tipo[nn]
                        answ = raw_input('ok  [[y]/n/r/s] ? ')
                        if not answ:
                            answ = 'y'
                        if answ == 'y':
                            listtmp.append(img)
                            ii = ii + 1
                            nn = nn + 1
                            if len(listtmp) == 8:
                                print '### number images selected: ', str(
                                    len(listtmp))
                                mflat = ntt.soficalibdef.makeflat(listtmp)
                                listaflat.append(mflat)
                                display_image(mflat, 1, '', '', False)
                                nn = 0
                                listtmp = []
                        elif answ == 'r':
                            listtmp = []
                            ii = 0
                            nn = 0
                        elif answ == 's':
                            break
                        else:
                            print len(images), _filter, ID
                        print '### number images selected: ', str(len(listtmp))
    else:
        listaflat = flats
    listaillum = []
    if illum:
        for _filter in illum:
            for ID in illum[_filter]:
                images = illum[_filter][ID]
                flatfield = searchflat(images[0], listaflat)[0]
                if flatfield:
                    illum_frame = ntt.soficalibdef.makeillumination(
                        images, flatfield)
                    listaillum.append(illum_frame)
                else:
                    print 'flat field not found'

        for img in listaflat:
            try:
                ntt.util.phase3header(img)  # phase 3 definitions
                ntt.util.updateheader(
                    img, 0, {'BUNIT': ['ADU', 'pixel units(ADU,electrons)']})
                ntt.util.updateheader(img, 0,
                                      {'FILETYPE': [31202, 'flat field']})
            except:
                print '\n### problems with phase 3 definitions'

        for img in listaillum:
            try:
                ntt.util.phase3header(img)  # phase 3 definitions
                ntt.util.updateheader(
                    img, 0, {'BUNIT': ['ADU', 'pixel units(ADU,electrons)']})
                ntt.util.updateheader(
                    img, 0, {'FILETYPE': [31213, 'illum corr  frames']})
            except:
                print '\n### problems with phase 3 definitions'
    return listaflat, listaillum
Example #5
0
def makeillumination(lista, flatfield):  #,outputfile,illum_frame):
    import os, glob, string, re
    from astropy.io import fits as pyfits
    import ntt
    from ntt.util import readhdr, readkey3, delete, display_image, defsex, name_duplicate, correctcard
    from numpy import compress, array, argmax, argmin, min, argsort, float32
    import datetime
    MJDtoday = 55927 + (datetime.date.today() -
                        datetime.date(2012, 01, 01)).days
    _date = readkey3(readhdr(lista[0]), 'date-night')
    _filter = readkey3(readhdr(lista[0]), 'filter')
    illum_frame = name_duplicate(
        lista[0], 'illum_' + _date + '_' + _filter + '_' + str(MJDtoday), '')
    from pyraf import iraf
    iraf.images(_doprint=0, Stdout=0)
    iraf.imutil(_doprint=0, Stdout=0)
    iraf.utilities(_doprint=0, Stdout=0)
    iraf.noao(_doprint=0, Stdout=0)
    iraf.imred(_doprint=0, Stdout=0)
    iraf.ccdred(_doprint=0, Stdout=0)
    iraf.digiphot(_doprint=0, Stdout=0)
    iraf.daophot(_doprint=0, Stdout=0)
    iraf.generic(_doprint=0, Stdout=0)
    toforget = [
        'digiphot.daophot', 'imutil.imarith', 'image', 'utilities.surfit'
    ]
    for t in toforget:
        iraf.unlearn(t)
    n = len(lista)
    #   start loop to read image names from the input file
    lista1 = []
    iraf.ccdred.verbose = 'no'
    ff = open('templist.lst', 'w')
    for i in range(0, len(lista)):
        ff.write('C' + lista[i] + '\n')
        delete('C' + lista[i])
        delete('C' + re.sub('.fits', '_sub.fits', lista[i]))
        ntt.sofiphotredudef.crosstalk(lista[i], 'C' + lista[i])
        iraf.noao.imred.ccdred.ccdproc('C' + lista[i],
                                       output='',
                                       overscan="no",
                                       trim="yes",
                                       ccdtype='',
                                       darkcor='no',
                                       fixpix='no',
                                       zerocor="no",
                                       flatcor='yes',
                                       illumco='no',
                                       trimsec='[1:1024,1:1007]',
                                       biassec='',
                                       flat=flatfield,
                                       illum='')
        correctcard('C' + lista[i])
        lista1.append('C' + lista[i])
    ff.close()
    print '\n### prereducing STD frames to compute illumination correction ........'
    lista2, skyfile = ntt.sofiphotredudef.skysub(
        lista1, readkey3(readhdr(lista1[0]), 'ron'),
        readkey3(readhdr(lista1[0]), 'gain'), True)
    lista2 = ntt.sofiphotredudef.sortbyJD(lista2)
    print '\n### use x on the star and q  to continue....'
    display_image(lista2[0], 2, '', '', False)
    delete('tmpone.coo')
    iraf.image.tv.imexamine(lista2[0],
                            2,
                            logfile='tmpone.coo',
                            keeplog='yes',
                            xformat='',
                            yformat='',
                            wcs='logical')
    iraf.tvmark(2,
                'tmpone.coo',
                mark="circle",
                number='yes',
                label='no',
                radii=8,
                nxoffse=5,
                nyoffse=5,
                color=204,
                txsize=2)
    xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
    x0, y0 = string.split(xycoo[0])
    x0 = float(x0)
    y0 = float(y0)
    xcum0 = readkey3(readhdr(lista2[0]), 'xcum')
    ycum0 = readkey3(readhdr(lista2[0]), 'ycum')
    iraf.digiphot(_doprint=0, Stdout=0)
    iraf.daophot(_doprint=0, Stdout=0)
    iraf.noao.digiphot.daophot.datapars.datamin = -1000
    iraf.noao.digiphot.daophot.datapars.datamax = 60000
    iraf.noao.digiphot.daophot.daopars.function = 'gauss'
    iraf.noao.digiphot.daophot.photpars.zmag = 0
    namesex = defsex('default.sex')
    for i in range(0, len(lista2)):
        j = i + 1
        xcum = readkey3(readhdr(lista2[i]), 'xcum')
        ycum = readkey3(readhdr(lista2[i]), 'ycum')
        xx = x0 - xcum0 + xcum
        yy = y0 - ycum0 + ycum
        # sex objects
        os.system('sex ' + lista2[i] + ' -c ' + namesex + '>  _logsex')
        delete('_logsex')
        xpix = iraf.proto.fields('detections.cat', fields='2', Stdout=1)
        ypix = iraf.proto.fields('detections.cat', fields='3', Stdout=1)
        cm = iraf.proto.fields('detections.cat', fields='4', Stdout=1)
        cm = compress((array(xpix) != ''), array(cm, float))
        ypix = compress((array(xpix) != ''), array(ypix, float))
        xpix = compress((array(xpix) != ''), array(xpix, float))
        if len(xpix) > 300:
            num = 300
        else:
            num = len(xpix) - 1
        xpix = xpix[argsort(cm)][0:num]
        ypix = ypix[argsort(cm)][0:num]
        distance = (ypix - yy)**2 + (xpix - xx)**2
        xx1, yy1 = xpix[argmin(distance)], ypix[argmin(distance)]
        f = open('tmpone.coo', 'w')
        f.write(str(xx1) + ' ' + str(yy1) + '\n')
        f.close()
        display_image(lista2[i], 1, '', '', False)
        iraf.tvmark(1,
                    'tmpone.coo',
                    mark="circle",
                    number='yes',
                    label='no',
                    radii=8,
                    nxoffse=5,
                    nyoffse=5,
                    color=204,
                    txsize=2)
        answ = 'n'
        while answ != 'y':
            answ = raw_input('selected the right one [[y]/n] ?')
            if not answ:
                answ = 'y'
            if answ in ['y', 'YES', 'yes', 'Y']:
                print lista2[i]
                delete('pippo.' + str(j) + '.mag')
                gggg = iraf.digiphot.daophot.phot(lista2[i],
                                                  "tmpone.coo",
                                                  output="pippo." + str(j) +
                                                  ".mag",
                                                  verify='no',
                                                  interac='no',
                                                  Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'
            else:
                print '\n### select the std star'
                display_image(lista2[i], 1, '', '', False)
                iraf.image.tv.imexamine(lista2[i],
                                        1,
                                        logfile='tmpone.coo',
                                        keeplog='yes',
                                        xformat='',
                                        yformat='',
                                        wcs='logical')
                xycoo = iraf.proto.fields('tmpone.coo', '1,2', Stdout=1)
                x2, y2 = string.split(xycoo[0])
                f = open('tmpone.coo', 'w')
                f.write(str(x2) + ' ' + str(y2) + '\n')
                f.close()
                delete('pippo.' + str(j) + '.mag')
                print '###### new selection ' + str(x2), str(y2)
                gggg = iraf.digiphot.daophot.phot(lista2[i],
                                                  "tmpone.coo",
                                                  output='pippo.' + str(j) +
                                                  '.mag',
                                                  verify='no',
                                                  interac='no',
                                                  Stdout=1)
                try:
                    float(string.split(gggg[0])[3])
                    answ = 'y'
                except:
                    print '\n### warning'
                    answ = 'n'

    os.system('ls pippo.*.mag > tempmag.lst')
    tmptbl0 = iraf.txdump(textfile="@tempmag.lst",
                          fields="XCENTER,YCENTER,FLUX",
                          expr='yes',
                          Stdout=1)
    ff = open('magnitudini', 'w')
    for i in tmptbl0:
        ff.write(i + '\n')
    ff.close()
    #   delete the temporary images and files
    delete("temp*.fits")
    delete('temp*.lst')
    delete(illum_frame)
    print '\n### fitting the illumination surface...'
    aaa = iraf.utilities.surfit('magnitudini',
                                image=illum_frame,
                                function="polynomial",
                                xorder=2,
                                yorder=2,
                                xterms="full",
                                ncols=1024,
                                nlines=1024,
                                Stdout=1)
    iraf.noao.imred.generic.normalize(illum_frame)
    correctcard(lista[0])
    data, hdr = pyfits.getdata(illum_frame, 0, header=True)
    data0, hdr0 = pyfits.getdata(lista[0], 0, header=True)
    delete(illum_frame)
    pyfits.writeto(illum_frame, float32(data), hdr0)
    flatfield0 = string.split(flatfield, '/')[-1]
    ntt.util.updateheader(illum_frame, 0,
                          {'MKILLUM': [flatfield0, 'flat field']})
    display_image(illum_frame, 1, '', '', False)
    for i in range(0, len(lista)):  # in lista:
        img = lista[i]
        delete('pippo.' + str(i) + '.mag')
        delete('C' + img)
        delete('C' + re.sub('.fits', '_sky.fits', img))
#    delete('C*.fits.mag.1')
#    iraf.hedit(illum_frame,'MKILLUM','Illum. corr. created '+flatfield,add='yes',update='yes',verify='no')
    return illum_frame
Example #6
0
def efoscreduction(imglist, _interactive, _doflat, _dobias, listflat, listbias, _dobadpixel, badpixelmask,
                   fringingmask, _archive, typefile, filenameobjects, _system, _cosmic, _verbose=False, method='iraf'):
    # print "LOGX:: Entering `efoscreduction` method/function in %(__file__)s"
    # % globals()
    import ntt
    from ntt.efoscphotredudef import searchbias
    from ntt.util import delete, readhdr, readkey3, display_image, searchflat, rangedata, correctcard
    from numpy import argmin, min, abs, sqrt
    import string
    import os
    import re
    import math
    import sys
    from pyraf import iraf
    # ##   Call and set parameters for useful iraf tasks
    iraf.noao(_doprint=0)
    iraf.imred(_doprint=0)
    iraf.ccdred(_doprint=0)
    iraf.proto(_doprint=0)

    toforget = ['ccdproc', 'zerocombine',
                'flatcombine', 'imreplace', 'proto.fixpix']
    for t in toforget:
        iraf.unlearn(t)

    iraf.ccdproc.darkcor = 'no'
    iraf.ccdproc.fixpix = 'no'
    iraf.ccdproc.flatcor = 'no'
    iraf.ccdproc.zerocor = 'no'
    iraf.ccdproc.overscan = 'no'
    iraf.ccdproc.ccdtype = ''
    iraf.ccdproc.biassec = ''
    iraf.ccdred.instrument = "/dev/null"

    if _verbose:
        iraf.ccdred.verbose = 'yes'
    else:
        iraf.ccdred.verbose = 'no'
    import datetime
    import time
    #      starttime=time.time()
    now = datetime.datetime.now()
    datenow = now.strftime('20%y%m%d%H%M')
    MJDtoday = 55927 + (datetime.date.today() - datetime.date(2012, 01, 01)).days
    outputfile = []
    reduceddata = rangedata(imglist)
    img = re.sub('\n', '', imglist[0])
    hdr = readhdr(img)
    _gain = readkey3(hdr, 'gain')
    _rdnoise = readkey3(hdr, 'ron')
    _instrume = readkey3(hdr, 'instrume')
    _trimsec = '[3:1010,1:1015]'
    biaslist = {}
    flatlist1 = {}
    flatlist2 = {}
    objectlist = {}
    filterlist1 = []
    filterlist2 = []
    for img in imglist:
        _type = ''
        img = re.sub('\n', '', img)
        hdr = readhdr(img)
        _naxis1 = readkey3(hdr, 'NAXIS1')
        _naxis2 = readkey3(hdr, 'NAXIS2')
        if _naxis1 != 1030 or _naxis2 != 1030:
            ntt.util.writeinthelog(
                'image ' + str(img) + ' different dimension =\n', './logNTT.txt')
            _type = 'not good'
        if not _type and readkey3(hdr, 'speed') != 'fastL':
            _type = 'not good'
        if not _type and readkey3(hdr, 'instrume') != 'efosc':
            _type = 'not good'
        _imagetype = readkey3(hdr, 'tech')
        if not _type and _imagetype == 'SPECTRUM':
            _type = 'spectroscopic data'
        if not _type:
            _exptime = readkey3(hdr, 'exptime')
            _date = readkey3(hdr, 'date-night')
            _filter = readkey3(hdr, 'filter')
            if float(_exptime) == 0.0:
                if _date not in biaslist:
                    biaslist[_date] = []
                biaslist[_date].append(img)
                _type = 'bias'
            if not _type:
                _object = readkey3(hdr, 'object')
                if _filter.lower() in ['g782', 'r784', 'z623', 'u640', 'b639', 'v641', 'r642',
                                       'i705'] and _imagetype == 'IMAGE':
                    if 'sky,flat' in _object.lower():
                        _type = 'flat'
                    elif 'dome' in _object.lower() or 'flat' in _object.lower():
                        _type = 'flat dome'
                    if _type == 'flat':
                        if _filter not in filterlist1:
                            filterlist1.append(_filter)
                            flatlist1[_filter] = []
                        flatlist1[_filter].append(img)
                    if _type == 'flat dome':
                        if _filter not in filterlist2:
                            filterlist2.append(_filter)
                            flatlist2[_filter] = []
                        flatlist2[_filter].append(img)
            if not _type:
                _catg = readkey3(hdr, 'catg')
                if 'science' in _catg.lower() or 'acquisition' in _catg.lower():
                    _type = 'object'
                    if _filter not in objectlist:
                        objectlist[_filter] = []
                    objectlist[_filter].append(img)
                    if 'acquisition' in _catg.lower():
                        try:
                            correctcard(img)
                            _ra1, _dec1, _name = ntt.util.correctobject(
                                img, 'standard_efosc_mab.txt')
                            _ra1, _dec1, _name = ntt.util.correctobject(
                                img, filenameobjects)
                        except:
                            pass

                elif 'focus' in _object.lower():
                    _type = 'not good'
            if not _type:
                print '\n### warning: object not recognized '
                _object = readkey3(hdr, 'object')
                print img, _object, _imagetype
                answ = raw_input(
                    'what is it: bias [1], flat [3], object[4], test [5] ?  [5] ')
                if not answ:
                    answ = '5'
                if answ == '1':
                    if _date not in biaslist:
                        biaslist[_date] = ()
                    biaslist[_date].append(img)
                elif answ == '4':
                    if _filter not in objectlist:
                        objectlist[_filter] = []
                    objectlist[_filter].append(img)
                elif answ == '3':
                    tt = raw_input('dome or sky [d/[s]] ? ')
                    if tt == 's':
                        _type = 'flat'
                        _filter = readkey3(hdr, 'filter')
                        if _filter not in filterlist1:
                            filterlist1.append(_filter)
                            flatlist1[_filter] = []
                        flatlist1[_filter].append(img)
                    elif tt == 'd':
                        _type = 'flat dome'
                        _filter = readkey3(hdr, 'filter')
                        if _filter not in filterlist2:
                            filterlist2.append(_filter)
                            flatlist2[_filter] = []
                        flatlist2[_filter].append(img)
                elif answ == '5':
                    _type = 'not good'

    filterlist = list(set(filterlist1 + filterlist2))
    if _verbose:
        print filterlist1
        print filterlist2
        print flatlist1
        print flatlist2
    flatlist = {}
    for _filt in filterlist:
        if _filt not in flatlist1.keys():
            if _filt in flatlist2.keys():
                if len(flatlist2[_filt]) >= 3:
                    flatlist[_filt] = flatlist2[_filt]
        elif len(flatlist1[_filt]) < 3:
            if _filt in flatlist2.keys():
                if len(flatlist2[_filt]) >= 3:
                    flatlist[_filt] = flatlist2[_filt]
        elif _filt in flatlist1.keys():
            if len(flatlist1[_filt]) >= 3:
                flatlist[_filt] = flatlist1[_filt]

    listaout = []
    if _verbose:
        print '\n### flat ', str(flatlist), '\n'
        print '\n### bias ', str(biaslist), '\n'
        print '\n### object ', str(objectlist), '\n'
        ###### masterbias  #################
    if _dobias:
        if not _archive:
            if listbias:
                masterbiaslist = listbias
            else:
                masterbiaslist = []
                if biaslist:
                    for _date in biaslist:
                        print '\n do bias ' + str(_date) + '\n'
                        biaslist[_date] = rejectbias(
                            biaslist[_date], False, 10)
                        if len(biaslist[_date]) >= 3:
                            masterbiasfile = 'bias_' + \
                                str(_date) + '_' + str(MJDtoday) + '.fits'
                            delete(masterbiasfile)
                            f = open('biaslist', 'w')
                            h = open('obiaslist', 'w')
                            for img in biaslist[_date]:
                                f.write(img + '\n')
                                h.write('o' + img + '\n')
                                delete('o' + img)
                            f.close()
                            h.close()
                            try:
                                print 'processing bias .....'
                                iraf.ccdproc('@biaslist', output='@obiaslist', overscan="no", trim="yes", zerocor='no',
                                             fixpix='no', ccdtype='', flatcor='no', darkcor='no', biassec='',
                                             trimsec=str(_trimsec), readaxi='column', Stdout=1)
                                iraf.zerocombine('@obiaslist', output=masterbiasfile, combine='median',
                                                 reject='ccdclip', ccdtype='', process='no',
                                                 rdnoise=_rdnoise, gain=_gain, Stdout=1)
                                correctcard(masterbiasfile)
                                num = 0
                                for img in biaslist[_date]:
                                    num = num + 1
                                    ntt.util.updateheader(masterbiasfile, 0, {
                                        'PROV' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                    ntt.util.updateheader(masterbiasfile, 0, {
                                        'TRACE' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                    delete('o' + img)
                                ntt.util.updateheader(masterbiasfile, 0,
                                                      {'M_EPOCH': [False, 'TRUE if resulting from multiple epochs']})
                                ntt.util.updateheader(masterbiasfile, 0,
                                                      {'SINGLEXP': [False, 'TRUE if resulting from single exposure']})
                                ntt.util.updateheader(masterbiasfile, 0, {
                                                      'FILETYPE': [11201, 'bias']})
                                masterbiaslist.append(masterbiasfile)

                                if masterbiasfile not in outputfile:
                                    outputfile.append(masterbiasfile)
                            except:
                                ntt.util.writeinthelog(
                                    'Warning ' +
                                    str(biaslist[_date]) +
                                    ' problem with this list of bias \n',
                                    './logNTT.txt')
                            if masterbiasfile and _interactive:
                                aa, bb, cc = display_image(
                                    masterbiasfile, 1, '', '', False)
                                answ = raw_input(
                                    'is the masterbias ok [[y]/n] ?')
                                if not answ:
                                    answ = 'y'
                                if answ in ['n', 'no']:
                                    sys.exit(
                                        'remove bad bias from input list and restart')
        else:
            masterbiaslist = []

    ########## masterflat   #########################

    if _doflat:
        if not _archive:
            if listflat:
                masterflatlist = listflat
            else:
                masterflatlist = []
                if flatlist:
                    for _filter in flatlist:
                        print '\n do flat ' + str(_filter) + '\n'
                        flatlist[_filter] = rejectflat(
                            flatlist[_filter], False)
                        if len(flatlist[_filter]) >= 3:
                            _date = readkey3(
                                readhdr(flatlist[_filter][0]), 'date-night')
                            masterflat = 'flat_' + \
                                str(_date) + '_' + str(_filter) + \
                                '_' + str(MJDtoday) + '.fits'
                            listaflat = 'flatlist_' + \
                                str(_date) + '_' + str(_filter)
                            _bias = ''
                            if masterbiaslist:
                                _bias = searchbias(flatlist[_filter][
                                                   0], masterbiaslist)[0]
                            if not _bias:
                                _bias = searchbias(flatlist[_filter][0], '')[0]
                            if _bias:
                                if _bias[0] == '/':
                                    os.system('cp ' + _bias + ' .')
                                    _bias = string.split(_bias, '/')[-1]
                                    _zerocor = 'yes'
                                else:
                                    _zerocor = 'yes'
                            else:
                                _zerocor = 'no'
                            answ0 = 'n'
                            while answ0 != 'y':
                                f = open(listaflat, 'w')
                                h = open('o' + listaflat, 'w')
                                for img in flatlist[_filter]:
                                    f.write(img + '\n')
                                    h.write('o' + img + '\n')
                                    delete('o' + img)
                                f.close()
                                h.close()
                                try:
                                    print 'processing flat .....'
                                    iraf.ccdproc('@' + listaflat, output='@o' + listaflat, overscan='no', trim='yes',
                                                 darkcor='no', fixpix='no',
                                                 zerocor=_zerocor, flatcor='no', trimsec=str(_trimsec), biassec='',
                                                 zero=_bias, readaxi='column', ccdtype='', Stdout=1)
                                    delete(masterflat)
                                    iraf.flatcombine('@o' + listaflat, output=masterflat, combine='average',
                                                     reject='avsigclip', ccdtype='', process='no',
                                                     rdnoise=_rdnoise, gain=_gain, statsec='[100:800,100:800]',
                                                     lsigma=3, hsigma=2, Stdout=1)
                                    masterflatlist.append(masterflat)
                                    correctcard(masterflat)
                                    num = 0
                                    for img in flatlist[_filter]:
                                        num = num + 1
                                        ntt.util.updateheader(masterflat, 0, {
                                            'PROV' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                        ntt.util.updateheader(masterflat, 0, {
                                            'TRACE' + str(num): [readkey3(readhdr(img), 'ARCFILE'), 'Originating file']})
                                        delete('o' + img)
                                    ntt.util.updateheader(
                                        masterflat, 0, {'ZEROCOR': [_bias, '']})
                                    ntt.util.updateheader(masterflat, 0, {
                                        'M_EPOCH': [False, 'TRUE if resulting from multiple epochs']})
                                    ntt.util.updateheader(masterflat, 0, {
                                        'SINGLEXP': [False, 'TRUE if resulting from single exposure']})
                                    ntt.util.updateheader(
                                        masterflat, 0, {'FILETYPE': [11202, 'flat field']})

                                    if masterflat not in outputfile:
                                        outputfile.append(masterflat)
                                except:
                                    ntt.util.writeinthelog(
                                        'Warning ' +
                                        str(flatlist[
                                            _filter]) + ' problem with this list of flat \n',
                                        './logNTT.txt')
                                aa, bb, cc = display_image(
                                    masterflat, 1, '', '', False)
                                if masterflat and _interactive:
                                    answ = raw_input(
                                        'is the masterflat ok [[y]/n] ?')
                                    if not answ:
                                        answ = 'y'
                                    if answ.lower() in ['n', 'no']:
                                        answ1 = raw_input(
                                            'try again [[y]/n] ?')
                                        if not answ1:
                                            answ1 = 'y'
                                        if answ1.lower() in ['y', 'yes']:
                                            flatlist[_filter] = ntt.efoscphotredudef.rejectflat(
                                                flatlist[_filter], True)
                                        else:
                                            sys.exit(
                                                'error: problem with flat .... exit')
                                    else:
                                        answ0 = 'y'
                                else:
                                    answ0 = 'y'
        else:
            masterflatlist = []
    ##########################################################################
    if len(masterbiaslist) == 0:
        masterbiaslist = ''
    if len(masterflatlist) == 0:
        masterflatlist = ''
    ######################################
    if _verbose:
        print ''
        print '#############################'
        print masterflatlist
        print masterbiaslist
        print '#############################'
        print ''
    if masterflatlist:
        listaout = listaout + masterflatlist
    if masterbiaslist:
        listaout = listaout + masterbiaslist
    if typefile == 'calib':
        objectlist = {}
    for _filter in objectlist:
        for img in objectlist[_filter]:
            hdr = readhdr(img)
            print '\n#####################################################################\n'
            _object = readkey3(hdr, 'object')
            _object = re.sub(' ', '', _object)
            _object = re.sub('/', '_', _object)
            _object = re.sub('\n', '', _object)
            _exptime = readkey3(hdr, 'exptime')
            _date = readkey3(hdr, 'date-night')
            nameout = ntt.util.name_duplicate(img, str(_object) + '_' + str(_date) + '_' + str(_filter) + '_' + str(
                MJDtoday), '')
            _bias = ''
            if _dobias:
                if masterbiaslist:
                    _bias = searchbias(img, masterbiaslist)[0]
                if not _bias:
                    _bias = searchbias(img, '')[0]
            _flat = ''
            if _doflat:
                if masterflatlist:
                    _flat = searchflat(img, masterflatlist)[0]
                if not _flat:
                    _flat = searchflat(img, '')[0]
                if _bias:  # bias  ###
                    if _bias[0] == '/':
                        os.system('cp ' + _bias + ' .')
                        _bias = string.split(_bias, '/')[-1]
                    _zerocor = 'yes'
                else:
                    _zerocor = 'no'
            else:
                _zerocor = 'no'

            if _flat:  # flat  ###
                if _flat[0] == '/':
                    os.system('cp ' + _flat + ' .')
                    _flat = string.split(_flat, '/')[-1]
                _flatcor = 'yes'
            else:
                _flatcor = 'no'
            sss = str(_object) + '_' + str(_date) + '_' + str(_filter)
            print '### input', img, sss
            print '### bias ', _zerocor, _bias
            print '### flat ', _flatcor, _flat
            print '### name ', nameout
            delete(nameout)
            try:
                iraf.ccdproc(img, output=nameout, overscan="no", trim="yes", zerocor=_zerocor, flatcor='no',
                             darkcor='no', trimsec=str(_trimsec), zero=_bias, biassec='', readaxi='column', Stdout=1)
                try:
                    iraf.ccdproc(nameout, output='', overscan="no", trim="no", zerocor='no', flatcor=_flatcor,
                                 darkcor='no', flat=_flat, readaxi='column', ccdtype='', Stdout=1)
                except:
                    iraf.imrepla(images=_flat, value=0.01,
                                 lower='INDEF', upper=0.01, radius=0)
                    iraf.ccdproc(nameout, output='', overscan="no", trim="no", zerocor='no', flatcor=_flatcor,
                                 darkcor='no', flat=_flat, readaxi='column', ccdtype='', Stdout=1)
                correctcard(nameout)
                ntt.util.updateheader(nameout, 0, {'FILTER': [readkey3(readhdr(nameout), 'filter'), 'Filter name'],
                                                   'SINGLEXP': [True, 'TRUE if resulting from single exposure'],
                                                   'M_EPOCH': [False, 'TRUE if resulting from multiple epochs'],
                                                   'FLATCOR': [_flat, ''],
                                                   'ZEROCOR': [_bias, ''], 'FILETYPE': [12204, 'pre-reduced image'],
                                                   'PROV1': [readkey3(readhdr(nameout), 'ARCFILE'), 'Originating file'],
                                                   'NCOMBINE': [1, 'Number of raw science data'],
                                                   'TRACE1': [readkey3(readhdr(nameout), 'ARCFILE'),
                                                              'Originating file']})
                ntt.util.airmass(nameout)  # phase 3 definitions

                ntt.util.writeinthelog('\n', './logNTT.txt')
                ntt.util.writeinthelog(
                    'image= ' + str(img) + ' output= ' + str(nameout) + '\n', './logNTT.txt')
                ntt.util.writeinthelog(
                    'bias= ' + str(_bias) + ', flat= ' + str(_flat) + '\n', './logNTT.txt')
                ntt.util.writeinthelog('\n', './logNTT.txt')
                if nameout not in outputfile:
                    outputfile.append(nameout)
            except:
                ntt.util.writeinthelog(
                    'image ' + str(img) + ' probably corrupted\n', './logNTT.txt')
            if _dobadpixel:
                if not badpixelmask:
                    badpixelmask = 'bad_pixel_mask.fits'
                    delete(badpixelmask)
                    os.system('cp ' + ntt.__path__[0] + '/archive/' + str(
                        _instrume) + '/badpixels/badpixel.fits ' + badpixelmask)
                iraf.proto.fixpix(images=nameout, masks=badpixelmask,
                                  linterp='INDEF', cinterp='INDEF', verbose='no')
                ntt.util.updateheader(
                    nameout, 0, {'FIXPIX': [badpixelmask, '']})
                ntt.util.writeinthelog('image ' + str(nameout) + ' bad pixel corrected with ' + badpixelmask + '\n',
                                       './logNTT.txt')
                print '\n### bad pixel mask correction ..... done'
            else:
                ntt.util.writeinthelog(
                    'image ' + str(nameout) + ' bad pixel NOT corrected\n', './logNTT.txt')
            if _cosmic:
                try:
                    print '\n### cosmic  ..... '
                    ntt.cosmics.lacos_im(nameout, _output='', gain=_gain, readn=_rdnoise, xorder=9, yorder=9,
                                         sigclip=4.5, sigfrac=0.5, objlim=1, skyval=0, niter=0, verbose=True,
                                         interactive=False)
                    ntt.util.updateheader(nameout, 0, {
                        'LACOSMIC': [True, 'TRUE if Laplacian cosmic ray rejection has been applied to the image']})
                    print '\n### cosmic  .....  removed '
                except Exception, e:
                    print e
            else:
                ntt.util.updateheader(nameout, 0, {
                    'LACOSMIC': [False, 'TRUE if Laplacian cosmic ray rejection has been applied to the image']})
            try:
                ##########################
                sexvec = ntt.efoscastrodef.sextractor(nameout)
                for cat in ['2mass', 'usnoa2', 'usnob1']:
                    rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = ntt.efoscastrodef.efoscastroloop(
                        [nameout], cat, False, 40, 40, 100, 'rxyscale', 100, 30, sexvec, True, 10, method)
                    if rmsx3 <= 2 and rmsy3 <= 2:
                        break
                if rmsx3 > 2 and rmsy3 > 2:
                    for cat in ['2mass', 'usnoa2', 'usnob1']:
                        rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = ntt.efoscastrodef.efoscastroloop(
                            [nameout], cat, False, 20, int(20), int(50), 'rxyscale', 100, 30, sexvec, True, 5, method)
                        if rmsx3 <= 2 and rmsy3 <= 2:
                            break
                    if rmsx3 > 2 and rmsy3 > 2:
                        for cat in ['2mass', 'usnoa2', 'usnob1']:
                            rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = ntt.efoscastrodef.efoscastroloop(
                                [nameout], cat, False, int(10), int(10),
                                int(25), 'rxyscale', 100, 30, sexvec, True, int(3), method)
                        ##########################
                astrostring = str(rmsx3) + ' ' + str(rmsy3) + ' ' + str(num3)
                ntt.util.updateheader(
                    nameout, 0, {'ASTROMET': [astrostring, 'rmsx rmsy nstars']})
                print '\n### check astrometry: fine \n### rmsx rmsy nstars: ' + astrostring
            except Exception, e:
                print e
                rmsx3, rmsy3, num3, fwhmgess, ellgess, ccc, rasys3, decsys3, magsat3 = '', '', '', '', '', '', '', '', ''
                print '\n### problem with astrometry, do you have network ? '
            if fwhmgess and fwhmgess < 99:
                ntt.util.updateheader(nameout, 0, {'PSF_FWHM': [fwhmgess, 'Spatial resolution (arcsec)'],
                                                   'ELLIPTIC': [ellgess, 'Average ellipticity of point sources'],
                                                   'CRDER1': [(1 / sqrt(2.)) * float(rmsx3) * (1. / 3600.),
                                                              'Random error (degree)'],
                                                   'CRDER2': [(1 / sqrt(2.)) * float(rmsy3) * (1. / 3600.),
                                                              'Random error (degree)'],
                                                   'CUNIT1': ['deg', 'unit of the coord. trans.'],
                                                   'CUNIT2': ['deg', 'unit of the coord. trans.'],
                                                   'CSYER1': [rasys3, 'Systematic error (RA_m - Ra_ref)'],
                                                   'CSYER2': [decsys3, 'Systematic error (DEC_m - DEC_ref)']})
            else:
                ntt.util.updateheader(nameout, 0, {'PSF_FWHM': [9999., 'FHWM (arcsec) - computed with sectractor'],
                                                   'ELLIPTIC': [9999., 'ellipticity of point sources (1-b/a)'],
                                                   'CRDER1': [9999., 'Random error in axis 1'],
                                                   'CRDER2': [9999., 'Random error in axis 2'],
                                                   'CUNIT1': ['deg', 'unit of the coord. trans.'],
                                                   'CUNIT2': ['deg', 'unit of the coord. trans.'],
                                                   'CSYER1': [9999., 'Systematic error (RA_m - Ra_ref)'],
                                                   'CSYER2': [9999., 'Systematic error (DEC_m - DEC_ref)']})

            try:
                result = ntt.efoscastrodef.zeropoint(
                    nameout, _system, method, False, False)
            except:
                result = ''
            if result:
                if os.path.isfile(re.sub('.fits', '.ph', nameout)):
                    if re.sub('.fits', '.ph', nameout) not in outputfile:
                        outputfile.append(
                            re.sub('.fits', '.ph', nameout))
                print '\n### zeropoint ..... done'
                for ll in result:
                    valore = '%3.3s %6.6s %6.6s' % (
                        str(ll), str(result[ll][1]), str(result[ll][0]))
                    print '### ', valore
                    ntt.util.updateheader(
                        nameout, 0, {'zp' + ll: [str(valore), '']})
            if magsat3:
                if readkey3(readhdr(nameout), 'FLUXCAL') == 'ABSOLUTE':
                    try:
                        ntt.util.updateheader(nameout, 0, {
                            'ABMAGSAT': [float(magsat3) + float(readkey3(readhdr(nameout)), 'PHOTZP'),
                                         'Saturation limit for point sources (AB mags)']})
                    except:
                        ntt.util.updateheader(nameout, 0, {
                            'ABMAGSAT': [float(magsat3), 'Saturation limit for point sources (AB mags)']})
                else:
                    ntt.util.updateheader(nameout, 0, {
                        'ABMAGSAT': [float(magsat3), 'Saturation limit for point sources (AB mags)']})
            else:
                ntt.util.updateheader(nameout, 0, {'ABMAGSAT': [
                                      9999., 'Saturation limit for point sources (AB mags)']})

            maglim = ntt.util.limmag(nameout)
            if maglim:
                ntt.util.updateheader(nameout, 0,
                                      {'ABMAGLIM': [maglim, '5-sigma limiting AB magnitude for point sources']})
            else:
                ntt.util.updateheader(nameout, 0,
                                      {'ABMAGLIM': [9999., '5-sigma limiting AB magnitude for point sources']})

            if readkey3(readhdr(nameout), 'filter') in ['i705']:
                try:
                    nameout, maskname = ntt.efoscphotredudef.fringing2(
                        nameout, fringingmask, _interactive, False)
                    if nameout not in outputfile:
                        outputfile.append(nameout)
                        if maskname not in outputfile:
                            outputfile.append(maskname)

                except:
                    ntt.util.writeinthelog(
                        'image ' + str(nameout) + ' probably corrupted\n', './logNTT.txt')
                    print '\n### problem with fringing correction'