Example #1
0
 def empty(cls, key_type, value_type):
     """Create a new empty Dict with *key_type* and *value_type*
     as the types for the keys and values of the dictionary respectively.
     """
     if config.DISABLE_JIT:
         return dict()
     else:
         return cls(dcttype=DictType(key_type, value_type))
Example #2
0
	def _assert_record_type(self,typ):
		if(typ not in self.hist_structs):
			typ_cls = REGISTERED_TYPES[typ]


			#Type : (op_id, _hist, shape, arg_types, vmap)
			struct_typ = self.hist_structs[typ] = Tuple([i8,
										 i8[::1], i8[::1], ListType(unicode_type),
										 DictType(typ_cls,i8)])
			self.hists[typ] = self.hists.get(typ,Dict.empty(i8,ListType(struct_typ)))
		return self.hist_structs[typ]
Example #3
0
# else:
# 	s = NULL*(l+1)
# 	for i in range(l):
# 		_set_code_point(s,i,x[i])
# 	return s[:l]


@njit(cache=False)
def enumerize_nb_objs(inp, out, enumerize_f, string_enums, number_enums,
                      string_backmap, number_backmap, enum_counter):
    for k, v in inp.items():
        out[k] = enumerize_f(v, string_enums, number_enums, string_backmap,
                             number_backmap, enum_counter)


attr_map_i_type = DictType(i8, i8)
attr_map_type = DictType(i8, attr_map_i_type)
attr_maps_type = DictType(unicode_type, attr_map_type)
bool_array = u1[:]
elm_present_type = DictType(unicode_type, bool_array)

VectInversionData = namedtuple('VectInversionData', [
    'element_names', 'slice_nominal', 'slice_continous', 'width_nominal',
    'width_continous', 'attr_records'
])
# NBVectInversionData = NamedTuple([elm_present_type,UniTuple(i8,2),UniTuple(i8,2),i8,i8,attr_map_type],VectInversionData)
NBVectInversionData = NamedTuple(
    [ListType(unicode_type), i8[::1], i8[::1], i8, i8, i8[:, ::1]],
    VectInversionData)
# elm_present_by_type, type_slices_nominal, type_slices_continuous, type_widths_nominal, type_widths_continous, attr_maps_by_type):
Example #4
0
def unravel_indicies(indicies, shape):
	sizes = np.zeros(len(shape), dtype=np.int64)
	result = np.zeros(len(shape), dtype=np.int64)
	sizes[-1] = 1
	for i in range(len(shape) - 2, -1, -1):
		sizes[i] = sizes[i + 1] * shape[i + 1]

	out = np.empty((len(indicies),len(shape)), dtype=np.int64)
	for j,index in enumerate(indicies):
		remainder = index
		for i in range(len(shape)):
			out[j,i] = remainder // sizes[i]
			remainder %= sizes[i]
	return out

i8_i8_dict = DictType(i8,i8)
i8_arr = i8[:]
@njit(nogil=True,fastmath=True,cache=True, locals={"arg_ind":i8[::1],"arg_uids":i8[::1]}) 
def retrace_back_one(goals, records, u_vds, hist_elems, max_depth, max_solutions=1):
	unq_arg_inds = Dict.empty(unicode_type, i8_i8_dict)
	pos_by_typ = Dict.empty(unicode_type, i8)

	solution_quota = float(max_solutions-len(goals)) if max_solutions else np.inf
	#Go through each goal in goals, and find applications of operations 
	#	which resulted in each subgoal. Add the indicies of args of each 
	#	goal satisficing operation application to the set of subgoals for 
	#	the next iteration.
	for goal in goals:
		n_goal_solutions = 0
		hist_elems_k = List.empty_list(HE)
		hist_elems.append(hist_elems_k)
        _x = str(x)
        _assert_map(_x, enums, backmap, counter)
        out[i] = enums[_x]
    return out


@njit(cache=False)
def enumerize_nb_objs(inp, out, enumerize_f, string_enums, number_enums,
                      string_backmap, number_backmap, enum_counter):
    for k, v in inp.items():
        _assert_map(k, string_enums, string_backmap, enum_counter)
        out[k] = enumerize_f(v, string_enums, number_enums, string_backmap,
                             number_backmap, enum_counter)


attr_map_i_type = DictType(i8, i8)
attr_map_type = DictType(i8, attr_map_i_type)
attr_maps_type = DictType(unicode_type, attr_map_type)
bool_array = u1[:]
elm_present_type = DictType(unicode_type, bool_array)

VectInversionData = namedtuple('VectInversionData', [
    'element_names', 'slice_nominal', 'slice_continous', 'width_nominal',
    'width_continous', 'attr_records'
])
# NBVectInversionData = NamedTuple([elm_present_type,UniTuple(i8,2),UniTuple(i8,2),i8,i8,attr_map_type],VectInversionData)
NBVectInversionData = NamedTuple(
    [ListType(unicode_type), i8[::1], i8[::1], i8, i8, i8[:, ::1]],
    VectInversionData)
# elm_present_by_type, type_slices_nominal, type_slices_continuous, type_widths_nominal, type_widths_continous, attr_maps_by_type):
Example #6
0
from .molecule import Molecule

array32 = float32[:]


@jitclass({
    "mols": ListType(Molecule.class_type.instance_type),
    "sdf_file": string,
    "ref_chgs_file": string,
    "emp_chgs_file": string,
    "num_of_mols": int64,
    "num_of_ats": int64,
    "num_of_bonds": int64,
    "ref_chgs": float32[:],
    "emp_chgs": float32[:],
    "emp_ats_types_chgs": DictType(string, float32[:]),
    "ref_ats_types_chgs": DictType(string, float32[:]),
    "all_ats_ids": int16[:],
    "ats_types": ListType(string),
    "bonds_types": ListType(string)
})
class SetOfMolecules:
    def __init__(self, mols, sdf_file, ats_types, bonds_types):
        self.mols = mols
        self.sdf_file = sdf_file
        self.num_of_mols = len(self.mols)
        self.num_of_ats = np.sum(
            np.array([mol.num_of_ats for mol in self.mols], dtype=int64))
        self.num_of_bonds = np.sum(
            np.array([mol.num_of_bonds for mol in self.mols], dtype=int64))
        self.ats_types = ats_types  # prepsat po fixu
Example #7
0
from cre.fact import BaseFact, BaseFactType, cast_fact
from cre.utils import lower_setattr, _cast_structref, _meminfo_from_struct, decode_idrec, encode_idrec, \
 _pointer_from_struct, _pointer_from_struct_incref, _struct_from_pointer, _decref_pointer
from cre.vector import new_vector, VectorType
from cre.caching import import_from_cached, source_in_cache, source_to_cache

BASE_T_ID_STACK_SIZE = 16
BASE_F_ID_STACK_SIZE = 64
BASE_FACT_SET_SIZE = 64
BASE_CHANGE_QUEUE_SIZE = 2048

#### KB Data Definition ####

i8_arr = i8[:]
u1_arr = u1[:]
str_to_bool_dict = DictType(unicode_type, u1_arr)
two_str = UniTuple(unicode_type, 2)
two_str_set = DictType(two_str, u1)

meminfo_type = types.MemInfoPointer(types.voidptr)
basefact_list = ListType(BaseFactType)
i8_arr = i8[:]

kb_data_fields = [
    #Vector<*Vector<*BaseFact>> i.e. 2D vector that holds pointers to facts
    ("facts", VectorType),  #<- will be arr of pointers to vectors
    #Vector<*Vector<i8>> i.e. 2D vector that holds retracted f_ids
    ("retracted_f_ids", VectorType),
    # ("empty_f_id_heads" , i8[:]),
    ("n_types", i8),
    ("names_to_idrecs", DictType(unicode_type, u8)),