Example #1
0
def mdist_kernel(Q, S, out):
    """mean-adjusted Euclidean Distance naive kernel: nothing cached"""

    warpDim = cuda.blockDim.x // 32
    warpIdx = cuda.threadIdx.x // 32
    laneIdx = cuda.threadIdx.x % 32

    lower = cuda.blockIdx.x * warpDim + warpIdx
    stride = cuda.gridDim.x * warpDim

    for position in range(lower, S.shape[0] - Q.shape[0] + 1, stride):

        accum = float64(0)
        for index in range(laneIdx, Q.shape[0], 32):
            accum += S[position + index]

        for delta in [16, 8, 4, 2, 1]:
            accum += cuda.shfl_xor_sync(0xFFFFFFFF, accum, delta)

        mean = accum / Q.shape[0]
        accum = float64(0)
        for index in range(laneIdx, Q.shape[0], 32):
            value = Q[index] - S[position + index] + mean
            accum += value * value

        for delta in [16, 8, 4, 2, 1]:
            value = cuda.shfl_down_sync(0xFFFFFFFF, accum, delta)
            accum += value

        if laneIdx == 0:
            out[position] = accum
Example #2
0
def zdist_kernel(Q, S, out, epsilon):
    """z-normalized Euclidean Distance naive kernel: nothing cached"""

    warpDim = cuda.blockDim.x // 32
    warpIdx = cuda.threadIdx.x // 32
    laneIdx = cuda.threadIdx.x % 32

    lower = cuda.blockIdx.x * warpDim + warpIdx
    stride = cuda.gridDim.x * warpDim

    for position in range(lower, S.shape[0] - Q.shape[0] + 1, stride):

        accum1 = float64(0)
        accum2 = float64(0)
        for index in range(laneIdx, Q.shape[0], 32):
            value = S[position + index]
            accum1 += value
            accum2 += value * value

        for delta in [16, 8, 4, 2, 1]:
            accum1 += cuda.shfl_xor_sync(0xFFFFFFFF, accum1, delta)
            accum2 += cuda.shfl_xor_sync(0xFFFFFFFF, accum2, delta)

        mean = accum1 / Q.shape[0]
        sigma = accum2 / Q.shape[0] - mean * mean
        sigma = sqrt(sigma) if sigma > 0.0 else epsilon

        accum = float64(0)
        for index in range(laneIdx, Q.shape[0], 32):
            value = Q[index] - (S[position + index] - mean) / sigma
            accum += value * value

        for delta in [16, 8, 4, 2, 1]:
            accum += cuda.shfl_down_sync(0xFFFFFFFF, accum, delta)

        if laneIdx == 0:
            out[position] = accum
Example #3
0
def use_shfl_sync_xor(ary, xor):
    i = cuda.grid(1)
    val = cuda.shfl_xor_sync(0xffffffff, i, xor)
    ary[i] = val