Example #1
0
def read_input(f):
    if not f:
        raise Exception("invalid file")
    numbers = []
    for line in fileinput.input(f):
        if not fileinput.isfirstline():
            numbers.append(int(line.strip()))
    return numbers
def getNumbersFromErrLog():
    numbers = []
    file = open("F:\Workspace\_data\log\\resumeSpider\error-logging3.log", "r")
    lines = file.readlines()
    for line in lines:
        beginIndex = line.index("-")
        endIndex = line.index(".zip")
        number = line[beginIndex + 1: endIndex]
        numbers.append(number)
    file.close()
    print(numbers)
    return numbers
Example #3
0
def MyLoop(x):
    i = 0
    n = x
    numbers = []
    #***
    while i < n:
        numbers.append(i)
        print numbers
        print "at the bottom is %d" % numbers[i]
        i = i + 1
        print n, i
    for num in numbers:
        print num
Example #4
0
def _get_node_number(shader: str, taken_numbers: dict) -> int:
    if shader not in taken_numbers:
        taken_numbers[shader] = [None]

    numbers = taken_numbers[shader]

    for i, n in enumerate(numbers):
        if n is None:
            numbers[i] = i
            return i

    # If no empty slot is found, add the next bigger number to the end of the list
    num = len(numbers)
    numbers.append(num)
    return num
Example #5
0
def fill_out_numbers(peaks, rate):
    """Fill in numbers between peaks.
    
    Parameters
    ----------
    peaks : array-like
        Peaks to fill between.
    rate : float
        Rate to use between peaks.

    Examples
    --------
    >>> fill_out_numbers([0, 1, -1], rate=0.25)
    array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  0.75,  0.5 ,  0.25,  0.  ,
           -0.25, -0.5 , -0.75, -1.  ])
    >>> fill_out_numbers([[0, 1, -1], [1, 2, -2]], rate=0.25)
    array([[ 0.  ,  1.  , -1.  ],
           [ 0.25,  1.25, -1.25],
           [ 0.5 ,  1.5 , -1.5 ],
           [ 0.75,  1.75, -1.75],
           [ 1.  ,  2.  , -2.  ]])
    
    Ported from the MATLAB function written by Mark Denavit.
    """
    peaks = np.array(peaks)

    if len(peaks.shape) == 1:
        peaks = peaks.reshape(peaks.size, 1)

    if peaks.shape[0] == 1:
        peaks = peaks.T

    numpeaks = peaks.shape[0]
    numbers = [peaks[0, :]]

    for i in range(numpeaks - 1):
        diff = peaks[i + 1, :] - peaks[i, :]
        numsteps = int(np.maximum(2, 1 + np.ceil(np.max(np.abs(diff / rate)))))
        numbers_to_add = np.linspace(peaks[i, :], peaks[i + 1, :], numsteps)
        numbers.append(numbers_to_add[1:, :])

    numbers = np.vstack(numbers)
    if 1 in numbers.shape:
        numbers = numbers.flatten()

    return numbers
Example #6
0
            sean0 += case[i]
        else:
            pat1 ^= case[i]
            sean1 += case[i]
        i += 1
    if (pat0 == pat1):
        return max(sean0, sean1)
    return 0


def analyze(case, n):
    pattern = []
    numbers_split = case.rstrip().split(' ')
    numbers = []
    for number in numbers_split:
        numbers.append(int(number))
    actual_max = 0
    pattern.append(1)
    for i in range(1, n):
        pattern.append(0)
    while (pattern.count(0) > 0):
        sum = sum_check(numbers, pattern, n)
        if (sum > actual_max):
            actual_max = sum
        advance_one(pattern, n)


#        print pattern
    if (actual_max > 0):
        return actual_max
    else:
Example #7
0
from _ast import Num
from PIL.ImImagePlugin import number
import numbers
i = 0
numbers = []
while i < 6:
    print "At the top i is %d" % i
    numbers.append(i)
    i = i + 1
    print "Numbers now:", numbers
    print "At the bottom i is %d" % i

print "The numbers:"

for num in numbers:
    print num


def MyLoop(x):
    i = 0
    n = x
    numbers = []
    #***
    while i < n:
        numbers.append(i)
        print numbers
        print "at the bottom is %d" % numbers[i]
        i = i + 1
        print n, i
    for num in numbers:
        print num
Example #8
0
def interpolate_1d_linear_old(
        x_in,
        val_in,
        x_out,
        x_tolerance=0,
        out_of_bounds='nan',
        assume_sorted=True,
        many_nans=False,
        ):
    """Linear 1D-interpolation for numbers or datetime.

        x_in and x_out can be floats or datetime.datetime instances.
       
        Parameters
        ----------
        x_in : array of floats or list of datetime.datetime
        x_out : array of floats or list of datetime.datetime
        val_in : array of floats
            same length as x_in
        x_tolerance : float or datetime.timedelta, optional
            only nearest neighbours that are close than x_tolerance are
            considered. 0 causes infinite tolerance! Default: 0.
        out_of_bounds : {'zero', 'nan', 'nearest', float}
            out of bounds value are replaced by this
        assume_sorted : bool
            if True, the function assumes that x_in be sorted in rising order
        many_nans : bool
            Switch this to True, if either x_in or val_in contain a lot of
            nan's.  The function yields exactly the same result, regardless on
            whether many_nans is True or False. It is just a matter of
            performance.  If x_in or val_in contain a lot of nan's, switching
            this to True will speed up the function. If they don't, it will
            slow down the function.
        
        Returns
        -------
        val_out : array
            The output is a linear interpolation between the sample values
            given in values_sample at the times given in val_in.     

        Notes
        -----
        float vs datetime.datetime:
            If some of x_in, x_out, or x_tolerance are given in numerical
            values and others as instances of datetime.datetime (or
            datetime.timedelta in the case of x_tolerance), the numericals are
            considered as seconds (since 1970).

        x_tolercance:
            if 0, this is interpreted as infinite tolerance!
       
        Author
        ------
        Written in 2014-2016
        by Andreas Anhaeuser
        Insitute for Geophysics and Meteorology
        University of Cologne
        Germany
        <*****@*****.**>
    """
    
    #### CHECK INPUT ###
    if not len(x_in) == len(val_in):
        raise LookupError('x_in and val_in must be of the same length.')

    #### Unsorted
    # recursively call function if unsorted:
    if not assume_sorted:
        idx_old = np.argsort(x_in)
        xi_sor  = sorted(x_in)
        vi_sor  = [val_in[i] for i in idx_old]
        
        o       = out_of_bounds
        return interpolate_1d_linear(x_in = xi_sor,
            val_in = vi_sor, x_out = x_out, x_tolerance = x_tolerance, 
            out_of_bounds = o, assume_sorted = True)
        
    # this is for dealing with out of bounds values lateron:
    if out_of_bounds in ['nan', 'NaN']:
        oob  = 'val'
        oobv = np.nan
    elif out_of_bounds in ['zero', 'zeros', '0']:
        oob  = 'val'
        oobv = 0.
    elif isinstance(out_of_bounds, numbers.Number):
        oob  = 'val'
        oobv = out_of_bounds
    else:
        oob  = 'nn'
        oobv = None
    
    # special case: empty input array:
    if len(x_in) == 0:
        return np.array([oobv] * len(x_out))
    
    # special case: empty output array:
    if len(x_out) == 0:
        return np.array([])
    
    # copy arrays and convert to np.array:
    xi  = x_in[:]
    xo  = x_out[:]
    vi  = val_in[:]
    tol = x_tolerance
    
    # convert datetime_list into a numerical list:
    for c in [xi, xo, vi]:
        if isinstance(c[0], dt.datetime):
            c[:] = du.datetime_to_seconds(c)

    # convert numpy arrays to lists:
    def convert(x):
        if isinstance(x, np.ndarray):
            return x.tolist()
        else:
            return x
    xi = convert(xi)
    xo = convert(xo)
    vi = convert(vi)

    # convert tol from timedelta to numerical:
    if isinstance(tol, dt.timedelta):
        tol = tol.seconds

    # convert tol==0 to inf:
    if tol == 0:
        tol = np.inf

    #### NaN's
    # If vi contains a lot of nan's, this will slow down nearest_neighbour.
    # For this reason, delete these elements from xi and vi:
    if many_nans:
        n = 0
        numbers = []
        for n in range(len(xi)):
            if not (np.isnan(vi[n]) or np.isnan(xi[n])):
                numbers.append(n)
        xi = [xi[n] for n in numbers]
        vi = [vi[n] for n in numbers]
            
    #### INTERPOLATION    
    # interpolation function:
    def f(xlo, xhi, vlo, vhi, x):
        """Linear interpolation function."""
        return ((x-xlo) * vhi + (xhi-x) * vlo) / (xhi-xlo)
        
    # initialization:
    valout = []
    N = len(xo)
    n = 0
    for x in xo:
        n += 1
        ###
        # FIND NEAREST NEIGHBOURS AND DETERMINE DISTANCES
        # nearest neighbours:
        xlo, ilo, vlo = nearest_neighbour(
            xi, x,
            direction='down', values=vi, skip_nans=True, assume_sorted=True)
            
        xhi, ihi, vhi = nearest_neighbour(
                xi, x, direction='up', values=vi,
                skip_nans=True, assume_sorted=True)


        # if no nearest neighbour is found:
        if xlo==None: xlo = -np.inf
        if xhi==None: xhi = +np.inf
        if vlo==None: vlo =  np.nan
        if vhi==None: vhi =  np.nan
        
        # distances:
        distlo = x-xlo
        disthi = xhi-x
        dist   = [distlo, disthi]
      
        ###
        # DETERMINE THE INTERPOLATED VALUE v CORRESPONDING TO x
        # special case: x is exactly on a non-nan input point:
        if max(dist) == 0:
            v = vlo   # (vlo==vhi in this case)
        
        # finite tolerance:
        elif tol < np.inf:
            inbounds = (distlo <= tol, disthi <= tol)
            
            if inbounds == (True, True):
                v = f(xlo, xhi, vlo, vhi, x)
            elif inbounds == (True, False):
                v = vlo
            elif inbounds == (False, True):
                v = vhi
            elif inbounds == (False, False) and oob == 'val':
                v = oobv
            elif inbounds == (False, False) and oob == 'nn':
                if distlo <= disthi:
                    v = vlo
                else:
                    v = vhi
        
        # infinite tolerance:
        elif tol == np.inf:
            neighbours = (distlo<np.inf,disthi<np.inf)
            
            if neighbours==(True, True):
                v = f(xlo,xhi,vlo,vhi,x)
            elif False in neighbours and oob=='val':
                v = oobv
            elif False in neighbours and oob=='nn':
                if distlo<=disthi: v = vlo
                else:              v = vhi
                

        # EXTEND OUTPUT ARRAY BY v:  
        valout.append(v)
        
    return np.array(valout)