Example #1
0
    def locate_label(self, linecontour, labelwidth):
        """find a good place to plot a label (relatively flat
        part of the contour) and the angle of rotation for the
        text object
        """

        nsize= len(linecontour)
        if labelwidth > 1:
            xsize = int(ceil(nsize/labelwidth))
        else:
            xsize = 1
        if xsize == 1:
            ysize = nsize
        else:
            ysize = labelwidth

        XX = resize(asarray(linecontour)[:,0],(xsize, ysize))
        YY = resize(asarray(linecontour)[:,1],(xsize,ysize))

        yfirst = YY[:,0]
        ylast = YY[:,-1]
        xfirst = XX[:,0]
        xlast = XX[:,-1]
        s = ( (reshape(yfirst, (xsize,1))-YY) *
              (reshape(xlast,(xsize,1)) - reshape(xfirst,(xsize,1)))
              - (reshape(xfirst,(xsize,1))-XX)
              * (reshape(ylast,(xsize,1)) - reshape(yfirst,(xsize,1))) )
        L=sqrt((xlast-xfirst)**2+(ylast-yfirst)**2)
        dist = add.reduce(([(abs(s)[i]/L[i]) for i in range(xsize)]),-1)
        x,y,ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth)
        #print 'ind, x, y', ind, x, y
        angle = arctan2(ylast - yfirst, xlast - xfirst)
        rotation = angle[ind]*180/pi
        if rotation > 90:
            rotation = rotation -180
        if rotation < -90:
            rotation = 180 + rotation

        # There must be a more efficient way...
        lc = [tuple(l) for l in linecontour]
        dind = lc.index((x,y))
        #print 'dind', dind
        #dind = list(linecontour).index((x,y))

        return x,y, rotation, dind
Example #2
0
    def locate_label(self, linecontour, labelwidth):
        """find a good place to plot a label (relatively flat
        part of the contour) and the angle of rotation for the
        text object
        """

        nsize = len(linecontour)
        if labelwidth > 1:
            xsize = int(ceil(nsize / labelwidth))
        else:
            xsize = 1
        if xsize == 1:
            ysize = nsize
        else:
            ysize = labelwidth

        XX = resize(array(linecontour)[:, 0], (xsize, ysize))
        YY = resize(array(linecontour)[:, 1], (xsize, ysize))

        yfirst = YY[:, 0]
        ylast = YY[:, -1]
        xfirst = XX[:, 0]
        xlast = XX[:, -1]
        s = (reshape(yfirst,
                     (xsize, 1)) - YY) * (reshape(xlast, (xsize, 1)) - reshape(
                         xfirst,
                         (xsize, 1))) - (reshape(xfirst, (xsize, 1)) - XX) * (
                             reshape(ylast,
                                     (xsize, 1)) - reshape(yfirst, (xsize, 1)))
        L = sqrt((xlast - xfirst)**2 + (ylast - yfirst)**2)
        dist = add.reduce(([(abs(s)[i] / L[i]) for i in range(xsize)]), -1)
        x, y, ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth)
        angle = arctan2(ylast - yfirst, xlast - xfirst)
        rotation = angle[ind] * 180 / pi
        if rotation > 90:
            rotation = rotation - 180
        if rotation < -90:
            rotation = 180 + rotation

        dind = list(linecontour).index((x, y))

        return x, y, rotation, dind
Example #3
0
def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none,
                  window=window_hanning, noverlap=0,
                  preferSpeedOverMemory=True,
                  progressCallback=donothing_callback,
                  returnPxx=False):

    """
    Cxy, Phase, freqs = cohere_pairs( X, ij, ...)
    
    Compute the coherence for all pairs in ij.  X is a
    numSamples,numCols Numeric array.  ij is a list of tuples (i,j).
    Each tuple is a pair of indexes into the columns of X for which
    you want to compute coherence.  For example, if X has 64 columns,
    and you want to compute all nonredundant pairs, define ij as

      ij = []
      for i in range(64):
          for j in range(i+1,64):
              ij.append( (i,j) )

    The other function arguments, except for 'preferSpeedOverMemory'
    (see below), are explained in the help string of 'psd'.

    Return value is a tuple (Cxy, Phase, freqs).

      Cxy -- a dictionary of (i,j) tuples -> coherence vector for that
        pair.  Ie, Cxy[(i,j) = cohere(X[:,i], X[:,j]).  Number of
        dictionary keys is len(ij)
      
      Phase -- a dictionary of phases of the cross spectral density at
        each frequency for each pair.  keys are (i,j).

      freqs -- a vector of frequencies, equal in length to either the
        coherence or phase vectors for any i,j key.  Eg, to make a coherence
        Bode plot:

          subplot(211)
          plot( freqs, Cxy[(12,19)])
          subplot(212)
          plot( freqs, Phase[(12,19)])
      
    For a large number of pairs, cohere_pairs can be much more
    efficient than just calling cohere for each pair, because it
    caches most of the intensive computations.  If N is the number of
    pairs, this function is O(N) for most of the heavy lifting,
    whereas calling cohere for each pair is O(N^2).  However, because
    of the caching, it is also more memory intensive, making 2
    additional complex arrays with approximately the same number of
    elements as X.

    The parameter 'preferSpeedOverMemory', if false, limits the
    caching by only making one, rather than two, complex cache arrays.
    This is useful if memory becomes critical.  Even when
    preferSpeedOverMemory is false, cohere_pairs will still give
    significant performace gains over calling cohere for each pair,
    and will use subtantially less memory than if
    preferSpeedOverMemory is true.  In my tests with a 43000,64 array
    over all nonredundant pairs, preferSpeedOverMemory=1 delivered a
    33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared
    with preferSpeedOverMemory=0.  But both solutions were more than
    10x faster than naievly crunching all possible pairs through
    cohere.

    See test/cohere_pairs_test.py in the src tree for an example
    script that shows that this cohere_pairs and cohere give the same
    results for a given pair.

    """
    numRows, numCols = X.shape

    # zero pad if X is too short
    if numRows < NFFT:
        tmp = X
        X = zeros( (NFFT, numCols), X.typecode())
        X[:numRows,:] = tmp
        del tmp

    numRows, numCols = X.shape
    # get all the columns of X that we are interested in by checking
    # the ij tuples
    seen = {}
    for i,j in ij:
        seen[i]=1; seen[j] = 1
    allColumns = seen.keys()
    Ncols = len(allColumns)
    del seen
    
    # for real X, ignore the negative frequencies
    if X.typecode()==Complex: numFreqs = NFFT
    else: numFreqs = NFFT//2+1

    # cache the FFT of every windowed, detrended NFFT length segement
    # of every channel.  If preferSpeedOverMemory, cache the conjugate
    # as well
    windowVals = window(ones((NFFT,), X.typecode()))
    ind = range(0, numRows-NFFT+1, NFFT-noverlap)
    numSlices = len(ind)
    FFTSlices = {}
    FFTConjSlices = {}
    Pxx = {}
    slices = range(numSlices)
    normVal = norm(windowVals)**2
    for iCol in allColumns:
        progressCallback(i/Ncols, 'Cacheing FFTs')
        Slices = zeros( (numSlices,numFreqs), Complex)
        for iSlice in slices:                    
            thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol]
            thisSlice = windowVals*detrend(thisSlice)
            Slices[iSlice,:] = fft(thisSlice)[:numFreqs]
            
        FFTSlices[iCol] = Slices
        if preferSpeedOverMemory:
            FFTConjSlices[iCol] = conjugate(Slices)
        Pxx[iCol] = divide(mean(absolute(Slices)**2), normVal)
    del Slices, ind, windowVals    

    # compute the coherences and phases for all pairs using the
    # cached FFTs
    Cxy = {}
    Phase = {}
    count = 0
    N = len(ij)
    for i,j in ij:
        count +=1
        if count%10==0:
            progressCallback(count/N, 'Computing coherences')

        if preferSpeedOverMemory:
            Pxy = FFTSlices[i] * FFTConjSlices[j]
        else:
            Pxy = FFTSlices[i] * conjugate(FFTSlices[j])
        if numSlices>1: Pxy = mean(Pxy)
        Pxy = divide(Pxy, normVal)
        Cxy[(i,j)] = divide(absolute(Pxy)**2, Pxx[i]*Pxx[j])
        Phase[(i,j)] =  arctan2(Pxy.imag, Pxy.real)

    freqs = Fs/NFFT*arange(numFreqs)
    if returnPxx:
       return Cxy, Phase, freqs, Pxx
    else:
       return Cxy, Phase, freqs
Example #4
0
def cohere_pairs(X,
                 ij,
                 NFFT=256,
                 Fs=2,
                 detrend=detrend_none,
                 window=window_hanning,
                 noverlap=0,
                 preferSpeedOverMemory=True,
                 progressCallback=donothing_callback,
                 returnPxx=False):
    """
    Cxy, Phase, freqs = cohere_pairs( X, ij, ...)
    
    Compute the coherence for all pairs in ij.  X is a
    numSamples,numCols Numeric array.  ij is a list of tuples (i,j).
    Each tuple is a pair of indexes into the columns of X for which
    you want to compute coherence.  For example, if X has 64 columns,
    and you want to compute all nonredundant pairs, define ij as

      ij = []
      for i in range(64):
          for j in range(i+1,64):
              ij.append( (i,j) )

    The other function arguments, except for 'preferSpeedOverMemory'
    (see below), are explained in the help string of 'psd'.

    Return value is a tuple (Cxy, Phase, freqs).

      Cxy -- a dictionary of (i,j) tuples -> coherence vector for that
        pair.  Ie, Cxy[(i,j) = cohere(X[:,i], X[:,j]).  Number of
        dictionary keys is len(ij)
      
      Phase -- a dictionary of phases of the cross spectral density at
        each frequency for each pair.  keys are (i,j).

      freqs -- a vector of frequencies, equal in length to either the
        coherence or phase vectors for any i,j key.  Eg, to make a coherence
        Bode plot:

          subplot(211)
          plot( freqs, Cxy[(12,19)])
          subplot(212)
          plot( freqs, Phase[(12,19)])
      
    For a large number of pairs, cohere_pairs can be much more
    efficient than just calling cohere for each pair, because it
    caches most of the intensive computations.  If N is the number of
    pairs, this function is O(N) for most of the heavy lifting,
    whereas calling cohere for each pair is O(N^2).  However, because
    of the caching, it is also more memory intensive, making 2
    additional complex arrays with approximately the same number of
    elements as X.

    The parameter 'preferSpeedOverMemory', if false, limits the
    caching by only making one, rather than two, complex cache arrays.
    This is useful if memory becomes critical.  Even when
    preferSpeedOverMemory is false, cohere_pairs will still give
    significant performace gains over calling cohere for each pair,
    and will use subtantially less memory than if
    preferSpeedOverMemory is true.  In my tests with a 43000,64 array
    over all nonredundant pairs, preferSpeedOverMemory=1 delivered a
    33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared
    with preferSpeedOverMemory=0.  But both solutions were more than
    10x faster than naievly crunching all possible pairs through
    cohere.

    See test/cohere_pairs_test.py in the src tree for an example
    script that shows that this cohere_pairs and cohere give the same
    results for a given pair.

    """
    numRows, numCols = X.shape

    # zero pad if X is too short
    if numRows < NFFT:
        tmp = X
        X = zeros((NFFT, numCols), typecode(X))
        X[:numRows, :] = tmp
        del tmp

    numRows, numCols = X.shape
    # get all the columns of X that we are interested in by checking
    # the ij tuples
    seen = {}
    for i, j in ij:
        seen[i] = 1
        seen[j] = 1
    allColumns = seen.keys()
    Ncols = len(allColumns)
    del seen

    # for real X, ignore the negative frequencies
    if typecode(X) == Complex: numFreqs = NFFT
    else: numFreqs = NFFT // 2 + 1

    # cache the FFT of every windowed, detrended NFFT length segement
    # of every channel.  If preferSpeedOverMemory, cache the conjugate
    # as well
    windowVals = window(ones((NFFT, ), typecode(X)))
    ind = range(0, numRows - NFFT + 1, NFFT - noverlap)
    numSlices = len(ind)
    FFTSlices = {}
    FFTConjSlices = {}
    Pxx = {}
    slices = range(numSlices)
    normVal = norm(windowVals)**2
    for iCol in allColumns:
        progressCallback(i / Ncols, 'Cacheing FFTs')
        Slices = zeros((numSlices, numFreqs), Complex)
        for iSlice in slices:
            thisSlice = X[ind[iSlice]:ind[iSlice] + NFFT, iCol]
            thisSlice = windowVals * detrend(thisSlice)
            Slices[iSlice, :] = fft(thisSlice)[:numFreqs]

        FFTSlices[iCol] = Slices
        if preferSpeedOverMemory:
            FFTConjSlices[iCol] = conjugate(Slices)
        Pxx[iCol] = divide(mean(absolute(Slices)**2), normVal)
    del Slices, ind, windowVals

    # compute the coherences and phases for all pairs using the
    # cached FFTs
    Cxy = {}
    Phase = {}
    count = 0
    N = len(ij)
    for i, j in ij:
        count += 1
        if count % 10 == 0:
            progressCallback(count / N, 'Computing coherences')

        if preferSpeedOverMemory:
            Pxy = FFTSlices[i] * FFTConjSlices[j]
        else:
            Pxy = FFTSlices[i] * conjugate(FFTSlices[j])
        if numSlices > 1: Pxy = mean(Pxy)
        Pxy = divide(Pxy, normVal)
        Cxy[(i, j)] = divide(absolute(Pxy)**2, Pxx[i] * Pxx[j])
        Phase[(i, j)] = arctan2(Pxy.imag, Pxy.real)

    freqs = Fs / NFFT * arange(numFreqs)
    if returnPxx:
        return Cxy, Phase, freqs, Pxx
    else:
        return Cxy, Phase, freqs