Example #1
0
def get_corrector_s(rinput, meta, ins, datamodel):
    sky_info = meta.get('master_sky')

    if sky_info is None:
        return numina.util.node.IdNode()
    else:
        with rinput.master_sky.open() as hdul:
            _logger.info('loading sky')
            _logger.debug('sky info: %s', sky_info)
            sky_corrector = proc.SkyCorrector(
                hdul[0].data,
                datamodel=datamodel,
                calibid=datamodel.get_imgid(hdul))
        return sky_corrector
Example #2
0
    def run_single(self, rinput):

        # FIXME: remove this, is deprecated

        obresult = rinput.obresult

        # just in case images are in result, instead of frames
        if not obresult.frames:
            frames = obresult.results
        else:
            frames = obresult.frames

        img_info = []
        data_hdul = []
        for f in frames:
            img = f.open()
            data_hdul.append(img)
            info = {}
            info['tstamp'] = img[0].header['tstamp']
            info['airmass'] = img[0].header['airmass']
            img_info.append(info)

        channels = FULL

        use_errors = True
        # Initial checks
        baseimg = data_hdul[0]
        has_num_ext = 'NUM' in baseimg
        has_bpm_ext = 'BPM' in baseimg
        baseshape = baseimg[0].shape
        subpixshape = baseshape
        base_header = baseimg[0].header
        compute_sky = 'NUM-SK' not in base_header
        compute_sky_advanced = False

        self.logger.debug('base image is: %s',
                          self.datamodel.get_imgid(baseimg))
        self.logger.debug('images have NUM extension: %s', has_num_ext)
        self.logger.debug('images have BPM extension: %s', has_bpm_ext)
        self.logger.debug('compute sky is needed: %s', compute_sky)

        if compute_sky:
            self.logger.info('compute sky simple')
            sky_result = self.compute_sky_simple(data_hdul, use_errors=False)
            self.save_intermediate_img(sky_result, 'sky_init.fits')
            sky_result.writeto('sky_init.fits', overwrite=True)
            sky_data = sky_result[0].data
            self.logger.debug('sky image has shape %s', sky_data.shape)

            self.logger.info('sky correction in individual images')
            corrector = proc.SkyCorrector(
                sky_data,
                self.datamodel,
                calibid=self.datamodel.get_imgid(sky_result))
            # If we do not update keyword SKYADD
            # there is no sky subtraction
            for m in data_hdul:
                m[0].header['SKYADD'] = True
            # this is a little hackish
            # sky corrected
            data_hdul_s = [corrector(m) for m in data_hdul]
            base_header = data_hdul_s[0][0].header
        else:
            sky_result = None
            data_hdul_s = data_hdul

        self.logger.info('Computing offsets from WCS information')

        finalshape, offsetsp, refpix, offset_xy0 = self.compute_offset_wcs_imgs(
            data_hdul_s, baseshape, subpixshape)

        self.logger.debug("Relative offsetsp %s", offsetsp)
        self.logger.info('Shape of resized array is %s', finalshape)

        # Resizing target imgs
        data_arr_sr, regions = narray.resize_arrays(
            [m[0].data for m in data_hdul_s],
            subpixshape,
            offsetsp,
            finalshape,
            fill=1)

        if has_num_ext:
            self.logger.debug('Using NUM extension')
            masks = [
                numpy.where(m['NUM'].data, 0, 1).astype('int16')
                for m in data_hdul
            ]
        elif has_bpm_ext:
            self.logger.debug('Using BPM extension')
            #
            masks = [
                numpy.where(m['BPM'].data, 1, 0).astype('int16')
                for m in data_hdul
            ]
        else:
            self.logger.warning('BPM missing, use zeros instead')
            false_mask = numpy.zeros(baseshape, dtype='int16')
            masks = [false_mask for _ in data_arr_sr]

        self.logger.debug('resize bad pixel masks')
        mask_arr_r, _ = narray.resize_arrays(masks,
                                             subpixshape,
                                             offsetsp,
                                             finalshape,
                                             fill=1)

        if self.intermediate_results:
            self.logger.debug('save resized intermediate img')
            for idx, arr_r in enumerate(data_arr_sr):
                self.save_intermediate_array(arr_r, 'interm1_%03d.fits' % idx)

        hdulist = self.combine2(data_arr_sr, mask_arr_r, data_hdul, offsetsp,
                                use_errors)

        self.save_intermediate_img(hdulist, 'result_initial1.fits')

        compute_cross_offsets = True
        if compute_cross_offsets:

            self.logger.debug("Compute cross-correlation of images")
            # regions_c = self.compute_regions(finalshape, box=200, corners=True)

            # Regions frm bright objects
            regions_c = self.compute_regions_from_objs(hdulist[0].data,
                                                       finalshape,
                                                       box=20)

            try:

                offsets_xy_c = self.compute_offset_xy_crosscor_regions(
                    data_arr_sr, regions_c, refine=True, tol=1)
                #
                # Combined offsets
                # Offsets in numpy order, swaping
                offsets_xy_t = offset_xy0 - offsets_xy_c
                offsets_fc = offsets_xy_t[:, ::-1]
                offsets_fc_t = numpy.round(offsets_fc).astype('int')
                self.logger.debug('Total offsets: %s', offsets_xy_t)
                self.logger.info('Computing relative offsets from cross-corr')
                finalshape, offsetsp = narray.combine_shape(
                    subpixshape, offsets_fc_t)
                #
                self.logger.debug("Relative offsetsp (crosscorr) %s", offsetsp)
                self.logger.info('Shape of resized array (crosscorr) is %s',
                                 finalshape)

                # Resizing target imgs
                self.logger.debug("Resize to final offsets")
                data_arr_sr, regions = narray.resize_arrays(
                    [m[0].data for m in data_hdul_s],
                    subpixshape,
                    offsetsp,
                    finalshape,
                    fill=1)

                if self.intermediate_results:
                    self.logger.debug('save resized intermediate2 img')
                    for idx, arr_r in enumerate(data_arr_sr):
                        self.save_intermediate_array(arr_r,
                                                     'interm2_%03d.fits' % idx)

                self.logger.debug('resize bad pixel masks')
                mask_arr_r, _ = narray.resize_arrays(masks,
                                                     subpixshape,
                                                     offsetsp,
                                                     finalshape,
                                                     fill=1)

                hdulist = self.combine2(data_arr_sr, mask_arr_r, data_hdul,
                                        offsetsp, use_errors)

                self.save_intermediate_img(hdulist, 'result_initial2.fits')
            except Exception as error:
                self.logger.warning('Error during cross-correlation, %s',
                                    error)

        catalog, objmask = self.create_object_catalog(hdulist[0].data,
                                                      border=50)

        data_arr_sky = [sky_result[0].data for _ in data_arr_sr]
        data_arr_0 = [(d[r] + s)
                      for d, r, s in zip(data_arr_sr, regions, data_arr_sky)]
        data_arr_r = [d.copy() for d in data_arr_sr]

        for inum in range(1, rinput.iterations + 1):
            # superflat
            sf_data = self.compute_superflat(data_arr_0, objmask, regions,
                                             channels)
            fits.writeto('superflat_%d.fits' % inum, sf_data, overwrite=True)
            # apply superflat
            data_arr_rf = data_arr_r
            for base, arr, reg in zip(data_arr_rf, data_arr_0, regions):
                arr_f = arr / sf_data
                #arr_f = arr
                base[reg] = arr_f

            # compute sky advanced
            data_arr_sky = []
            data_arr_rfs = []
            self.logger.info('Step %d, SC: computing advanced sky', inum)
            scale = rinput.sky_images_sep_time * 60
            tstamps = numpy.array([info['tstamp'] for info in img_info])
            for idx, hdu in enumerate(data_hdul):
                diff1 = tstamps - tstamps[idx]
                idxs1 = (diff1 > 0) & (diff1 < scale)
                idxs2 = (diff1 < 0) & (diff1 > -scale)
                l1, = numpy.nonzero(idxs1)
                l2, = numpy.nonzero(idxs2)
                limit1 = l1[-rinput.sky_images:]
                limit2 = l2[:rinput.sky_images]
                len_l1 = len(limit1)
                len_l2 = len(limit2)
                self.logger.info('For image %s, using %d-%d images)', idx,
                                 len_l1, len_l2)
                if len_l1 + len_l2 == 0:
                    self.logger.error('No sky image available for frame %d',
                                      idx)
                    raise ValueError('No sky image')
                skydata = []
                skymasks = []
                skyscales = []
                my_region = regions[idx]
                my_sky_scale = numpy.median(data_arr_rf[idx][my_region])
                for i in numpy.concatenate((limit1, limit2)):
                    region_s = regions[i]
                    data_s = data_arr_rf[i][region_s]
                    mask_s = objmask[region_s]
                    scale_s = numpy.median(data_s)
                    skydata.append(data_s)
                    skymasks.append(mask_s)
                    skyscales.append(scale_s)
                self.logger.debug('computing background with %d frames',
                                  len(skydata))
                sky, _, num = nacom.median(skydata, skymasks, scales=skyscales)
                # rescale
                sky *= my_sky_scale

                binmask = num == 0

                if numpy.any(binmask):
                    # We have pixels without
                    # sky background information
                    self.logger.warn(
                        'pixels without sky information when correcting %d',
                        idx)

                    # FIXME: during development, this is faster
                    # sky[binmask] = sky[num != 0].mean()
                    # To continue we interpolate over the patches
                    narray.fixpix2(sky, binmask, out=sky, iterations=1)

                name = 'sky_%d_%03d.fits' % (inum, idx)
                fits.writeto(name, sky, overwrite=True)
                name = 'sky_binmask_%d_%03d.fits' % (inum, idx)
                fits.writeto(name, binmask.astype('int16'), overwrite=True)

                data_arr_sky.append(sky)
                arr = numpy.copy(data_arr_rf[idx])
                arr[my_region] = data_arr_rf[idx][my_region] - sky
                data_arr_rfs.append(arr)
                # subtract sky advanced

            if self.intermediate_results:
                self.logger.debug('save resized intermediate img')
                for idx, arr_r in enumerate(data_arr_rfs):
                    self.save_intermediate_array(
                        arr_r, 'interm_%d_%03d.fits' % (inum, idx))

            hdulist = self.combine2(data_arr_rfs, mask_arr_r, data_hdul,
                                    offsetsp, use_errors)

            self.save_intermediate_img(hdulist, 'result_%d.fits' % inum)

            # For next step
            catalog, objmask = self.create_object_catalog(hdulist[0].data,
                                                          border=50)

            data_arr_0 = [
                (d[r] + s)
                for d, r, s in zip(data_arr_rfs, regions, data_arr_sky)
            ]
            data_arr_r = [d.copy() for d in data_arr_rfs]

        result = self.create_result(frame=hdulist)
        self.logger.info('end of dither recipe')
        return result
Example #3
0
    def run_single(self, rinput):

        # Open all images
        obresult = rinput.obresult

        data_hdul = []
        for f in obresult.frames:
            img = f.open()
            data_hdul.append(img)

        use_errors = True
        # Initial checks
        baseimg = data_hdul[0]
        has_num_ext = 'NUM' in baseimg
        has_bpm_ext = 'BPM' in baseimg
        baseshape = baseimg[0].shape
        subpixshape = baseshape
        base_header = baseimg[0].header
        compute_sky = 'NUM-SK' not in base_header
        compute_sky_advanced = False

        self.logger.debug('base image is: %s',
                          self.datamodel.get_imgid(baseimg))
        self.logger.debug('images have NUM extension: %s', has_num_ext)
        self.logger.debug('images have BPM extension: %s', has_bpm_ext)
        self.logger.debug('compute sky is needed: %s', compute_sky)

        if compute_sky:
            self.logger.info('compute sky simple')
            sky_result = self.compute_sky_simple(data_hdul, use_errors=False)
            self.save_intermediate_img(sky_result, 'sky_init.fits')
            sky_result.writeto('sky_init.fits', overwrite=True)
            sky_data = sky_result[0].data
            self.logger.debug('sky image has shape %s', sky_data.shape)

            self.logger.info('sky correction in individual images')
            corrector = proc.SkyCorrector(
                sky_data,
                self.datamodel,
                calibid=self.datamodel.get_imgid(sky_result))
            # If we do not update keyword SKYADD
            # there is no sky subtraction
            for m in data_hdul:
                m[0].header['SKYADD'] = True
            # this is a little hackish
            # sky corrected
            data_hdul_s = [corrector(m) for m in data_hdul]
            base_header = data_hdul_s[0][0].header
        else:
            sky_result = None
            data_hdul_s = data_hdul

        self.logger.info('Computing offsets from WCS information')

        finalshape, offsetsp, refpix, offset_xy0 = self.compute_offset_wcs_imgs(
            data_hdul_s, baseshape, subpixshape)

        self.logger.debug("Relative offsetsp %s", offsetsp)
        self.logger.info('Shape of resized array is %s', finalshape)

        # Resizing target imgs
        data_arr_sr, regions = resize_arrays([m[0].data for m in data_hdul_s],
                                             subpixshape,
                                             offsetsp,
                                             finalshape,
                                             fill=1)

        if self.intermediate_results:
            self.logger.debug('save resized intermediate img')
            for idx, arr_r in enumerate(data_arr_sr):
                self.save_intermediate_array(arr_r, 'interm1_%03d.fits' % idx)

        hdulist = self.combine(data_arr_sr, data_hdul, finalshape, offsetsp,
                               refpix, use_errors)

        self.save_intermediate_img(hdulist, 'result_initial1.fits')

        compute_cross_offsets = True
        if compute_cross_offsets:

            self.logger.debug("Compute cross-correlation of images")
            # regions = self.compute_regions(finalshape, box=200, corners=True)

            # Regions frm bright objects
            regions = self.compute_regions_from_objs(hdulist[0].data,
                                                     finalshape,
                                                     box=20)

            try:

                offsets_xy_c = self.compute_offset_xy_crosscor_regions(
                    data_arr_sr, regions, refine=True, tol=1)
                #
                # Combined offsets
                # Offsets in numpy order, swaping
                offsets_xy_t = offset_xy0 - offsets_xy_c
                offsets_fc = offsets_xy_t[:, ::-1]
                offsets_fc_t = numpy.round(offsets_fc).astype('int')
                self.logger.debug('Total offsets: %s', offsets_xy_t)
                self.logger.info('Computing relative offsets from cross-corr')
                finalshape, offsetsp = combine_shape(subpixshape, offsets_fc_t)
                #
                self.logger.debug("Relative offsetsp (crosscorr) %s", offsetsp)
                self.logger.info('Shape of resized array (crosscorr) is %s',
                                 finalshape)

                # Resizing target imgs
                self.logger.debug("Resize to final offsets")
                data_arr_sr, regions = resize_arrays(
                    [m[0].data for m in data_hdul_s],
                    subpixshape,
                    offsetsp,
                    finalshape,
                    fill=1)

                if self.intermediate_results:
                    self.logger.debug('save resized intermediate2 img')
                    for idx, arr_r in enumerate(data_arr_sr):
                        self.save_intermediate_array(arr_r,
                                                     'interm2_%03d.fits' % idx)

                hdulist = self.combine(data_arr_sr, data_hdul, finalshape,
                                       offsetsp, refpix, use_errors)

                self.save_intermediate_img(hdulist, 'result_initial2.fits')
            except Exception as error:
                self.logger.warning('Error during cross-correlation, %s',
                                    error)

        result = self.create_result(frame=hdulist, sky=sky_result)
        self.logger.info('end of dither recipe')
        return result
Example #4
0
    def run(self, rinput):
        self.logger.info('starting reduction of stare spectra')

        self.logger.info(rinput.master_rectwv)

        # build object to proceed with bpm, bias, dark and flat
        flow = self.init_filters(rinput)

        # apply bpm, bias, dark and flat
        reduced_image = basic_processing_with_combination(rinput,
                                                          flow,
                                                          method=median)
        # update header with additional info
        hdr = reduced_image[0].header
        self.set_base_headers(hdr)

        # save intermediate image in work directory
        self.save_intermediate_img(reduced_image, 'reduced_image.fits')

        # rectification and wavelength calibration (if a model has
        # been provided)
        if rinput.master_rectwv:
            # RectWaveCoeff object with rectification and wavelength
            # calibration coefficients for the particular CSU configuration
            rectwv_coeff = rectwv_coeff_from_mos_library(
                reduced_image, rinput.master_rectwv)

            # apply rectification and wavelength calibration
            stare_image = apply_rectwv_coeff(reduced_image, rectwv_coeff)

            # save as JSON file in work directory
            self.save_structured_as_json(rectwv_coeff, 'rectwv_coeff.json')

            # ds9 region files (to be saved in the work directory)
            if self.intermediate_results:
                save_four_ds9(rectwv_coeff)
                save_spectral_lines_ds9(rectwv_coeff)

            # compute median spectra employing the useful region of the
            # rectified image
            if self.intermediate_results:
                for imode, outfile in enumerate([
                        'median_spectra_full', 'median_spectra_slitlets',
                        'median_spectrum_slitlets'
                ]):
                    median_image = median_slitlets_rectified(stare_image,
                                                             mode=imode)
                    self.save_intermediate_img(median_image, outfile + '.fits')

            # image_wl_calibrated = True

        else:

            stare_image = reduced_image

            self.logger.info('No wavelength calibration provided')
            grism_value = hdr.get('GRISM', 'unknown')
            self.logger.debug('GRISM is %s', grism_value)
            if grism_value.lower() == 'open':
                self.logger.debug('GRISM is %s, so this seems OK', grism_value)

            # image_wl_calibrated = False

        if rinput.master_sky:
            # Sky subtraction after rectification
            msky = rinput.master_sky.open()
            # Check if images have the same size.
            # if so, go ahead
            if msky[0].data.shape != stare_image[0].data.shape:
                self.logger.warning(
                    "sky and current image don't have the same shape")
            else:
                sky_corrector = proc.SkyCorrector(
                    msky[0].data,
                    datamodel=self.datamodel,
                    calibid=self.datamodel.get_imgid(msky))

                stare_image = sky_corrector(stare_image)
        else:
            self.logger.info('No sky image provided')

        # save results in results directory
        self.logger.info('end reduction of stare spectra')
        result = self.create_result(reduced_image=reduced_image,
                                    stare=stare_image)
        return result