Example #1
0
def ifftshift(x,axes=None):
    """
    Inverse of fftshift.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None which is over all axes.

    See Also
    --------
    fftshift

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n-(n+1)/2
        mylist = concatenate((arange(p2,n),arange(p2)))
        y = take(y,mylist,k)
    return y
Example #2
0
def fftshift(x,axes=None):
    """
    Shift zero-frequency component to center of spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).
    If len(x) is even then the Nyquist component is y[0].

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to shift.  Default is None which shifts all axes.

    See Also
    --------
    ifftshift

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = (n+1)/2
        mylist = concatenate((arange(p2,n),arange(p2)))
        y = take(y,mylist,k)
    return y
Example #3
0
def fftshift(x, axes=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to shift.  Default is None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    ifftshift : The inverse of `fftshift`.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(10, 0.1)
    >>> freqs
    array([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
    >>> np.fft.fftshift(freqs)
    array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    Shift the zero-frequency component only along the second axis:

    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.fftshift(freqs, axes=(1,))
    array([[ 2.,  0.,  1.],
           [-4.,  3.,  4.],
           [-1., -3., -2.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, (int, nt.integer)):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = (n+1)//2
        mylist = concatenate((arange(p2,n),arange(p2)))
        y = take(y,mylist,k)
    return y
Example #4
0
def fftfreq(n,d=1.0):
    """ fftfreq(n, d=1.0) -> f

    DFT sample frequencies

    The returned float array contains the frequency bins in
    cycles/unit (with zero at the start) given a window length n and a
    sample spacing d:

      f = [0,1,...,n/2-1,-n/2,...,-1]/(d*n)         if n is even
      f = [0,1,...,(n-1)/2,-(n-1)/2,...,-1]/(d*n)   if n is odd
    """
    assert isinstance(n,types.IntType) or isinstance(n, integer)
    return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)
 def original_fftshift(x, axes=None):
     """ How fftshift was implemented in v1.14"""
     tmp = asarray(x)
     ndim = tmp.ndim
     if axes is None:
         axes = list(range(ndim))
     elif isinstance(axes, integer_types):
         axes = (axes,)
     y = tmp
     for k in axes:
         n = tmp.shape[k]
         p2 = (n + 1) // 2
         mylist = concatenate((arange(p2, n), arange(p2)))
         y = take(y, mylist, k)
     return y
Example #6
0
def ifftshift(x,axes=None):
    """ ifftshift(x,axes=None) - > y

    Inverse of fftshift.
    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n-(n+1)/2
        mylist = concatenate((arange(p2,n),arange(p2)))
        y = take(y,mylist,k)
    return y
Example #7
0
def det(a):
    """Compute the determinant of a matrix

    Parameters
    ----------
    a : array-like, shape (M, M)

    Returns
    -------
    det : float or complex
        Determinant of a

    Notes
    -----
    The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
    """
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n,), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n+1)) % 2
    return (1.-2.*sign)*multiply.reduce(diagonal(a), axis=-1)
Example #8
0
 def test_strided(self):
     a = arange(12)
     b = a[::2]
     low, high = utils.byte_bounds(b)
     # the largest pointer address is lost (even numbers only in the
     # stride), and compensate addresses for striding by 2
     assert_equal(high - low, b.size * 2 * b.itemsize - b.itemsize)
Example #9
0
def ifftshift(x, axes=None):
    """
    The inverse of `fftshift`. Although identical for even-length `x`, the
    functions differ by one sample for odd-length `x`.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, integer_types):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n-(n+1)//2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y
Example #10
0
def ifftshift(x, axes=None):
    """
    The inverse of fftshift.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    elif isinstance(axes, (int, nt.integer)):
        axes = (axes, )
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n - (n + 1) // 2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y
Example #11
0
def fftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles 
    per unit of the sample spacing (with zero at the start).  For instance, if 
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.
        
    Returns
    -------
    f : ndarray
        Array of length `n` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
    >>> fourier = np.fft.fft(signal)
    >>> n = signal.size
    >>> timestep = 0.1
    >>> freq = np.fft.fftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

    """
    if not (isinstance(n,types.IntType) or isinstance(n, integer)):
        raise ValueError("n should be an integer")
    val = 1.0 / (n * d)
    results = empty(n, int)
    N = (n-1)//2 + 1
    p1 = arange(0, N, dtype=int)
    results[:N] = p1
    p2 = arange(-(n//2), 0, dtype=int)
    results[N:] = p2
    return results * val
Example #12
0
def fftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length `n` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
    >>> fourier = np.fft.fft(signal)
    >>> n = signal.size
    >>> timestep = 0.1
    >>> freq = np.fft.fftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

    """
    if not isinstance(n, integer_types):
        raise ValueError("n should be an integer")
    val = 1.0 / (n * d)
    results = empty(n, int)
    N = (n - 1) // 2 + 1
    p1 = arange(0, N, dtype=int)
    results[:N] = p1
    p2 = arange(-(n // 2), 0, dtype=int)
    results[N:] = p2
    return results * val
Example #13
0
def fftfreq(n,d=1.0):
    """
    Discrete Fourier Transform sample frequencies.

    The returned float array contains the frequency bins in
    cycles/unit (with zero at the start) given a window length `n` and a
    sample spacing `d`.
    ::

      f = [0,1,...,n/2-1,-n/2,...,-1]/(d*n)         if n is even
      f = [0,1,...,(n-1)/2,-(n-1)/2,...,-1]/(d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar
        Sample spacing.

    Returns
    -------
    out : ndarray, shape(`n`,)
        Sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2.,  8., -6.,  4.,  1., 0.,  3.,  5.])
    >>> fourier = np.fft.fft(signal)
    >>> n = len(signal)
    >>> timestep = 0.1
    >>> freq = np.fft.fftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

    """
    assert isinstance(n,types.IntType) or isinstance(n, integer)
    val = 1.0/(n*d)
    results = empty(n, int)
    N = (n-1)//2 + 1
    p1 = arange(0,N,dtype=int)
    results[:N] = p1
    p2 = arange(-(n//2),0,dtype=int)
    results[N:] = p2
    return results * val
def ifftshift(x, axes=None):
    """
    The inverse of fftshift.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n - (n + 1) / 2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y
    def main():
        l = 50
        # tau = 0.05
        h = 0.1
        u = 1

        t_arr_print = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 5.0, 10, 20, 30]

        t_start = min(t_arr_print)
        t_end = max(t_arr_print) + 0.00001

        c_start = 0.5
        c_end = 0.5
        c_step = 0.5

        x_arr = arange(2 * h, l, h)
        c_arr = arange(c_start, c_end + 0.0001, c_step)

        for c in c_arr:
            tau = c / u * h
            t_arr = arange(t_start, t_end, tau)

            data = FTCS_Solver(t_start, t_end, l, tau, h, fi)
            data.initialize(fi)

            for t in t_arr:
                data.set_u(0, t + tau, 0)

                data.set_u(h, t + tau, 0)

                print(f"calculate for t: {round(t, 2)}")
                for x in x_arr:
                    data.set_u(
                        x, t + tau,
                        data.u(x, t) - c * (data.u(x, t) - data.u(x - h, t)))

                data.set_u(l, t + tau, 0)

                if t in t_arr_print:
                    print(c)
                    print(t)
                    plt.figure(str(round(t, 2)))
                    plt.subplot(graph_index)
                    plt.plot([0, h, *x_arr, l], data.get_state(t))
    def animate(n):
        global ax
        global data
        global l
        global h

        print(data.data[n])
        ax.clear()
        ax.plot(arange(0, l + h, h), data.data[n])
        return data.data[n],
Example #17
0
def fftfreq(n,d=1.0):
    """ fftfreq(n, d=1.0) -> f

    DFT sample frequencies

    The returned float array contains the frequency bins in
    cycles/unit (with zero at the start) given a window length n and a
    sample spacing d:

      f = [0,1,...,n/2-1,-n/2,...,-1]/(d*n)         if n is even
      f = [0,1,...,(n-1)/2,-(n-1)/2,...,-1]/(d*n)   if n is odd
    """
    assert isinstance(n,types.IntType) or isinstance(n, integer)
    val = 1.0/(n*d)
    results = empty(n, int)
    N = (n-1)//2 + 1
    p1 = arange(0,N,dtype=int)
    results[:N] = p1
    p2 = arange(-(n//2),0,dtype=int)
    results[N:] = p2
    return results * val
Example #18
0
def fftshift(x,axes=None):
    """ fftshift(x, axes=None) -> y

    Shift zero-frequency component to center of spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).

    Notes:
      If len(x) is even then the Nyquist component is y[0].
    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = (n+1)/2
        mylist = concatenate((arange(p2,n),arange(p2)))
        y = take(y,mylist,k)
    return y
Example #19
0
def fftfreq(n, d=1.0):
    """ fftfreq(n, d=1.0) -> f

    DFT sample frequencies

    The returned float array contains the frequency bins in
    cycles/unit (with zero at the start) given a window length n and a
    sample spacing d:

      f = [0,1,...,n/2-1,-n/2,...,-1]/(d*n)         if n is even
      f = [0,1,...,(n-1)/2,-(n-1)/2,...,-1]/(d*n)   if n is odd
    """
    assert isinstance(n, types.IntType) or isinstance(n, integer)
    val = 1.0 / (n * d)
    results = empty(n, int)
    N = (n - 1) // 2 + 1
    p1 = arange(0, N, dtype=int)
    results[:N] = p1
    p2 = arange(-(n // 2), 0, dtype=int)
    results[N:] = p2
    return results * val
Example #20
0
def fftshift(x,axes=None):
    """ fftshift(x, axes=None) -> y

    Shift zero-frequency component to center of spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).

    Notes:
      If len(x) is even then the Nyquist component is y[0].
    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = range(ndim)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = (n+1)/2
        mylist = concatenate((arange(p2,n),arange(p2)))
        y = take(y,mylist,k)
    return y
    def animate(n):
        global ax
        global fig
        global data
        global l
        global h

        hist = data.data
        print(hist[n])
        x_range = arange(0, l + h, h)
        ax.clear()
        ax.plot(x_range, hist[n])
        return x_range,
Example #22
0
def test_concatenate_axis_None():
    a = arange(4, dtype=float64).reshape((2, 2))
    b = range(3)
    c = ['x']
    r = concatenate((a, a), axis=None)
    assert_equal(r.dtype, a.dtype)
    assert_equal(r.ndim, 1)
    r = concatenate((a, b), axis=None)
    assert_equal(r.size, a.size + len(b))
    assert_equal(r.dtype, a.dtype)
    r = concatenate((a, b, c), axis=None)
    d = array(['0', '1', '2', '3', '0', '1', '2', 'x'])
    assert_array_equal(r, d)
def test_concatenate_axis_None():
    a = arange(4, dtype=float64).reshape((2,2))
    b = list(range(3))
    c = ['x']
    r = concatenate((a, a), axis=None)
    assert_equal(r.dtype, a.dtype)
    assert_equal(r.ndim, 1)
    r = concatenate((a, b), axis=None)
    assert_equal(r.size, a.size + len(b))
    assert_equal(r.dtype, a.dtype)
    r = concatenate((a, b, c), axis=None)
    d = array(['0', '1', '2', '3', 
               '0', '1', '2', 'x'])
    assert_array_equal(r,d)
Example #24
0
def rfftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies
    (for usage with rfft, irfft).

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
    the Nyquist frequency component is considered to be positive.

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length ``n//2 + 1`` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
    >>> fourier = np.fft.rfft(signal)
    >>> n = signal.size
    >>> sample_rate = 100
    >>> freq = np.fft.fftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40., -50., -40., -30., -20., -10.])
    >>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40.,  50.])

    """
    if not (isinstance(n, int) or isinstance(n, integer)):
        raise ValueError("n should be an integer")
    val = 1.0 / (n * d)
    N = n // 2 + 1
    results = arange(0, N, dtype=int)
    return results * val
Example #25
0
def rfftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies 
    (for usage with rfft, irfft).

    The returned float array `f` contains the frequency bin centers in cycles 
    per unit of the sample spacing (with zero at the start).  For instance, if 
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
    the Nyquist frequency component is considered to be positive.

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length ``n//2 + 1`` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
    >>> fourier = np.fft.rfft(signal)
    >>> n = signal.size
    >>> sample_rate = 100
    >>> freq = np.fft.fftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40., -50., -40., -30., -20., -10.])
    >>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40.,  50.])

    """
    if not (isinstance(n,types.IntType) or isinstance(n, integer)):
        raise ValueError("n should be an integer")
    val = 1.0/(n*d)
    N = n//2 + 1
    results = arange(0, N, dtype=int)
    return results * val
Example #26
0
def beze_interpolate(x_arr, y_arr):
    B_x = []
    B_y = []

    for t in arange(0, 1.01, 0.001):
        res_x = 0
        res_y = 0

        for i in range(len(x_arr)):
            res_x = res_x + x_arr[i]*b(i, len(x_arr) - 1, t)
            res_y = res_y + y_arr[i]*b(i, len(y_arr) - 1, t)
        
        B_x.append(res_x)
        B_y.append(res_y)
    return {'x': B_x, 'y': B_y}
Example #27
0
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : array_like, shape (M, M)
        Input array.

    Returns
    -------
    det : ndarray
        Determinant of `a`.

    Notes
    -----
    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    """
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n, ), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n + 1)) % 2
    return (1. - 2. * sign) * multiply.reduce(diagonal(a), axis=-1)
Example #28
0
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : array_like, shape (M, M)
        Input array.

    Returns
    -------
    det : ndarray
        Determinant of `a`.

    Notes
    -----
    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    """
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n,), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n+1)) % 2
    return (1.-2.*sign)*multiply.reduce(diagonal(a), axis=-1)
Example #29
0
def plot_u_from_book(graph_index):
    def a_k(k, t):
        res = -2*exp(pi ** 2 * k ** 2 * t) 
        res *= (pi * k * (6 * t - 1) * sin(pi * k) + (6 * t - 3) * cos(pi * k) - 6 * t)
        res += pi * k * sin(pi * k) + 3 * cos(pi * k)
        res /= (pi ** 4 * k **4)
        return res

    def a_0(t):
        res = 1 / 2
        res *= (t - 6 * t ** 2)
        res += 2
        return res 


    sum_a_k = 0


    h = 0.1
    l = 1
    tau = 0.1
    t_arr = [0, 0.1, 0.5, 1.0, 5.0, 10.0]

    for t in t_arr:

        u_arr = []

        for x in arange(0, l + h, h):
            sum_a_k = 0

            for k in range(1, 3):
                sum_a_k += a_k(k, t) * cos(pi * k * x) * exp(-(pi*k/l)**2 * t)

            u = 0.5 * a_0(t) + sum_a_k

            u_arr.append(u)

        plt.figure(str(round(t, 1)))
        plt.subplot(graph_index)
        plt.plot(u_arr)  
    plt.show()
Example #30
0
def test_concatenate():
    # Test concatenate function
    # No arrays raise ValueError
    assert_raises(ValueError, concatenate, ())
    # Scalars cannot be concatenated
    assert_raises(ValueError, concatenate, (0, ))
    assert_raises(ValueError, concatenate, (array(0), ))
    # One sequence returns unmodified (but as array)
    r4 = list(range(4))
    assert_array_equal(concatenate((r4, )), r4)
    # Any sequence
    assert_array_equal(concatenate((tuple(r4), )), r4)
    assert_array_equal(concatenate((array(r4), )), r4)
    # 1D default concatenation
    r3 = list(range(3))
    assert_array_equal(concatenate((r4, r3)), r4 + r3)
    # Mixed sequence types
    assert_array_equal(concatenate((tuple(r4), r3)), r4 + r3)
    assert_array_equal(concatenate((array(r4), r3)), r4 + r3)
    # Explicit axis specification
    assert_array_equal(concatenate((r4, r3), 0), r4 + r3)
    # Including negative
    assert_array_equal(concatenate((r4, r3), -1), r4 + r3)
    # 2D
    a23 = array([[10, 11, 12], [13, 14, 15]])
    a13 = array([[0, 1, 2]])
    res = array([[10, 11, 12], [13, 14, 15], [0, 1, 2]])
    assert_array_equal(concatenate((a23, a13)), res)
    assert_array_equal(concatenate((a23, a13), 0), res)
    assert_array_equal(concatenate((a23.T, a13.T), 1), res.T)
    assert_array_equal(concatenate((a23.T, a13.T), -1), res.T)
    # Arrays much match shape
    assert_raises(ValueError, concatenate, (a23.T, a13.T), 0)
    # 3D
    res = arange(2 * 3 * 7).reshape((2, 3, 7))
    a0 = res[..., :4]
    a1 = res[..., 4:6]
    a2 = res[..., 6:]
    assert_array_equal(concatenate((a0, a1, a2), 2), res)
    assert_array_equal(concatenate((a0, a1, a2), -1), res)
    assert_array_equal(concatenate((a0.T, a1.T, a2.T), 0), res.T)
def test_concatenate():
    # Test concatenate function
    # No arrays raise ValueError
    assert_raises(ValueError, concatenate, ())
    # Scalars cannot be concatenated
    assert_raises(ValueError, concatenate, (0,))
    assert_raises(ValueError, concatenate, (array(0),))
    # One sequence returns unmodified (but as array)
    r4 = list(range(4))
    assert_array_equal(concatenate((r4,)), r4)
    # Any sequence
    assert_array_equal(concatenate((tuple(r4),)), r4)
    assert_array_equal(concatenate((array(r4),)), r4)
    # 1D default concatenation
    r3 = list(range(3))
    assert_array_equal(concatenate((r4, r3)), r4 + r3)
    # Mixed sequence types
    assert_array_equal(concatenate((tuple(r4), r3)), r4 + r3)
    assert_array_equal(concatenate((array(r4), r3)), r4 + r3)
    # Explicit axis specification
    assert_array_equal(concatenate((r4, r3), 0), r4 + r3)
    # Including negative
    assert_array_equal(concatenate((r4, r3), -1), r4 + r3)
    # 2D
    a23 = array([[10, 11, 12], [13, 14, 15]])
    a13 = array([[0, 1, 2]])
    res = array([[10, 11, 12], [13, 14, 15], [0, 1, 2]])
    assert_array_equal(concatenate((a23, a13)), res)
    assert_array_equal(concatenate((a23, a13), 0), res)
    assert_array_equal(concatenate((a23.T, a13.T), 1), res.T)
    assert_array_equal(concatenate((a23.T, a13.T), -1), res.T)
    # Arrays much match shape
    assert_raises(ValueError, concatenate, (a23.T, a13.T), 0)
    # 3D
    res = arange(2 * 3 * 7).reshape((2, 3, 7))
    a0 = res[..., :4]
    a1 = res[..., 4:6]
    a2 = res[..., 6:]
    assert_array_equal(concatenate((a0, a1, a2), 2), res)
    assert_array_equal(concatenate((a0, a1, a2), -1), res)
    assert_array_equal(concatenate((a0.T, a1.T, a2.T), 0), res.T)
Example #32
0
def det(a):
    "The determinant of the 2-d array a"
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n, ), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n + 1)) % 2
    return (1. - 2. * sign) * multiply.reduce(diagonal(a), axis=-1)
Example #33
0
def det(a):
    "The determinant of the 2-d array a"
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n,), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n+1)) % 2
    return (1.-2.*sign)*multiply.reduce(diagonal(a), axis=-1)
Example #34
0
def rfftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies
    (for usage with rfft, irfft).

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
    the Nyquist frequency component is considered to be positive.

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length ``n//2 + 1`` containing the sample frequencies.


    """
    if not isinstance(n, integer_types):
        raise ValueError("n should be an integer")
    val = 1.0 / (n * d)
    N = n // 2 + 1
    results = arange(0, N, dtype=int)
    return results * val
Example #35
0
def test_byte_bounds():
    a = arange(12).reshape(3, 4)
    low, high = utils.byte_bounds(a)
    assert_equal(high - low, a.size * a.itemsize)
Example #36
0
def test_byte_bounds():
    a = arange(12).reshape(3, 4)
    low, high = utils.byte_bounds(a)
    assert_equal(high - low, a.size * a.itemsize)
Example #37
0
 def initialize(self, init_f):
     init_arr = []
     for x in arange(0, self.l + self.h, self.h):
         init_arr.append(init_f(x, self.h))
     self.data.append(init_arr)
Example #38
0
 def test_byte_bounds(self):
     # pointer difference matches size * itemsize
     # due to contiguity
     a = arange(12).reshape(3, 4)
     low, high = utils.byte_bounds(a)
     assert_equal(high - low, a.size * a.itemsize)
Example #39
0
 def test_unusual_order_negative_stride(self):
     a = arange(12).reshape(3, 4)
     b = a.T[::-1]
     low, high = utils.byte_bounds(b)
     assert_equal(high - low, b.size * b.itemsize)
Example #40
0
    A = 0.1

    res1 = -G * M[i] + B * N[i] * M[i]
    res2 = P - A * N[i] - B * N[i] * M[i]

    return (res1, res2)


t = 0
P = 5
cc = -5
dt = 0.1
i = 1
startT = 0
endT = 300
t = arange(startT, endT, dt)
size = int((endT - startT) / dt)
M = [0]
N = [0]

for i in range(1, size):
    if i % 100 == 0:
        P = P + cc
        cc = cc * -1

    print(N)
    print(M)

    k1M, k1N = NMDer(t[i], M, N, P, i)
    k2M, k2N = NMDer(t[i] + dt / 2, M + dt * k1M / 2, N + dt * k1N / 2, P, i)
    k3M, k3N = NMDer(t[i] + dt / 2, M + dt * k2M / 2, N + dt * k2N / 2, P, i)
Example #41
0
from matplotlib import pyplot as plt
from numpy.core import arange
from math import pow


def f(x, a, lambd1, lambd2):
    print(lambd2 / lambd1)
    return a * (x**(lambd2 / lambd1))


if __name__ == "__main__":
    x_arr = arange(0, 1, 0.0001)
    a_arr = arange(-20, 20, 3)

    l1 = (-1 + (17**0.5)) / 4
    l2 = (-1 - (17**0.5)) / 4

    for a in a_arr:
        y_arr = [f(x, a, l1, l2) for x in x_arr]
        plt.plot(x_arr, y_arr)

    plt.show()
Example #42
0
    def __init__(self,
                 scene,
                 position,
                 text,
                 size=None,
                 color=None,
                 align=(0, 0),
                 layer=0):
        if not color: color = settings.display['annotation_color']
        if not size: size = settings.display['view_font_size']
        self.position = fvec3(position)
        self.color = fvec3(color)
        self.size = size
        self.layer = layer

        # load font
        def load(scene):
            img, align = create_font_texture(
                ImageFont.truetype(ressourcedir + '/NotoMono-Regular.ttf',
                                   2 * size))
            return scene.ctx.texture(img.size, 1, img.tobytes()), align

        self.fonttex, self.fontalign = scene.ressource(('fonttex', size), load)

        # load shader
        def load(scene):
            shader = scene.ctx.program(
                vertex_shader=open(ressourcedir + '/shaders/font.vert').read(),
                fragment_shader=open(ressourcedir +
                                     '/shaders/font.frag').read(),
            )
            shader['fonttex'].value = 0
            return shader

        self.shader = scene.ressource('shader_font', load)

        # place triangles
        points = np.zeros((len(pointsdef) * len(text), 4), 'f4')
        l = 0
        c = 0
        for i, char in enumerate(text):
            if char == '\n':
                c = 0
                l += 1
            elif char == '\t':
                c += 4 - c % 4  # TODO: use a tab size in settings
            elif char == ' ':
                c += 1
            else:
                n = ord(char)
                #placement = char_placement(2*size, *self.fontalign, n)
                for j, add in enumerate(pointsdef):
                    points[len(pointsdef) * i + j] = [
                        add[0] + c,
                        add[1] - l,
                        (n % self.fontalign[0] + add[0]) / self.fontalign[0],
                        (n // self.fontalign[0] - add[1]) / self.fontalign[1],
                    ]
                c += 1
        l += 1
        align = (processalign(align[0], c), -processalign(align[1], l))
        points -= [*align, 0, 0]
        self.textsize = (c, l)
        self.visualsize = (-align[0], -align[1], c // 2 - align[0],
                           l - align[1])

        # create the buffers on the GPU
        self.vb_points = scene.ctx.buffer(points)
        self.vb_faces = scene.ctx.buffer(np.arange(points.shape[0],
                                                   dtype='u4'))
        self.va = scene.ctx.vertex_array(
            self.shader,
            [(self.vb_points, '2f 2f', 'v_position', 'v_uv')],
        )
Example #43
0
 def test_byte_bounds(self):
     # pointer difference matches size * itemsize
     # due to contiguity
     a = arange(12).reshape(3, 4)
     low, high = utils.byte_bounds(a)
     assert_equal(high - low, a.size * a.itemsize)
Example #44
0
        # print()
        # print()
        # print()
        # print()

    def get_state(self, t):
        i = int(round(t / self.tau))
        return self.data[i]


if __name__ == "__main__":
    l = 1
    tau = 0.05
    h = 0.0002

    t_arr_print = arange(0, 0.55, 0.05)

    t_start = min(t_arr_print)
    t_end = max(t_arr_print) + tau

    d_start = 0.0
    d_end = 0.0
    d_step = 0.1

    t_arr = arange(t_start + tau, t_end, tau)
    d_arr = arange(0, 0.6, 0.1)  #arange(d_start, d_end + 0.1, d_step)

    for d in d_arr:
        x_arr = arange(h, l, h)
        data = FTCS_Solver(t_start, t_end, l, tau, h, fi)
        data.initialize(init_f)
Example #45
0
        try:
            self.array.__setattr__(attr, value)
        except AttributeError:
            object.__setattr__(self, attr, value)

    # Only called after other approaches fail.
    def __getattr__(self,attr):
        if (attr == 'array'):
            return object.__getattribute__(self, attr)
        return self.array.__getattribute__(attr)

#############################################################
# Test of class container
#############################################################
if __name__ == '__main__':
    temp=reshape(arange(10000),(100,100))

    ua=container(temp)
    # new object created begin test
    print dir(ua)
    print shape(ua),ua.shape # I have changed Numeric.py

    ua_small=ua[:3,:5]
    print ua_small
    ua_small[0,0]=10  # this did not change ua[0,0], which is not normal behavior
    print ua_small[0,0],ua[0,0]
    print sin(ua_small)/3.*6.+sqrt(ua_small**2)
    print less(ua_small,103),type(less(ua_small,103))
    print type(ua_small*reshape(arange(15),shape(ua_small)))
    print reshape(ua_small,(5,3))
    print transpose(ua_small)
class TestStrUnicodeSuperSubscripts:
    @pytest.fixture(scope="class", autouse=True)
    def use_unicode(self):
        poly.set_default_printstyle("unicode")

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0·x¹ + 3.0·x²"),
            ([-1, 0, 3, -1], "-1.0 + 0.0·x¹ + 3.0·x² - 1.0·x³"),
            (
                arange(12),
                (
                    "0.0 + 1.0·x¹ + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + "
                    "6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + "
                    "11.0·x¹¹"
                ),
            ),
        ),
    )
    def test_polynomial_str(self, inp, tgt):
        res = str(poly.Polynomial(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + "
                    "5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + "
                    "9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)"
                ),
            ),
        ),
    )
    def test_chebyshev_str(self, inp, tgt):
        res = str(poly.Chebyshev(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + "
                    "5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + "
                    "9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)"
                ),
            ),
        ),
    )
    def test_legendre_str(self, inp, tgt):
        res = str(poly.Legendre(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + "
                    "5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + "
                    "9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)"
                ),
            ),
        ),
    )
    def test_hermite_str(self, inp, tgt):
        res = str(poly.Hermite(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + "
                    "4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + "
                    "8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n"
                    "11.0·He₁₁(x)"
                ),
            ),
        ),
    )
    def test_hermiteE_str(self, inp, tgt):
        res = str(poly.HermiteE(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + "
                    "5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + "
                    "9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)"
                ),
            ),
        ),
    )
    def test_laguerre_str(self, inp, tgt):
        res = str(poly.Laguerre(inp))
        assert_equal(res, tgt)
class TestStrAscii:
    @pytest.fixture(scope="class", autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle("ascii")

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0 x**1 + 3.0 x**2"),
            ([-1, 0, 3, -1], "-1.0 + 0.0 x**1 + 3.0 x**2 - 1.0 x**3"),
            (
                arange(12),
                (
                    "0.0 + 1.0 x**1 + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + "
                    "5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + "
                    "9.0 x**9 + 10.0 x**10 + 11.0 x**11"
                ),
            ),
        ),
    )
    def test_polynomial_str(self, inp, tgt):
        res = str(poly.Polynomial(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + "
                    "4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + "
                    "8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n"
                    "11.0 T_11(x)"
                ),
            ),
        ),
    )
    def test_chebyshev_str(self, inp, tgt):
        res = str(poly.Chebyshev(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + "
                    "4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + "
                    "8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n"
                    "11.0 P_11(x)"
                ),
            ),
        ),
    )
    def test_legendre_str(self, inp, tgt):
        res = str(poly.Legendre(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + "
                    "4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + "
                    "8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n"
                    "11.0 H_11(x)"
                ),
            ),
        ),
    )
    def test_hermite_str(self, inp, tgt):
        res = str(poly.Hermite(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + "
                    "4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + "
                    "7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n"
                    "10.0 He_10(x) + 11.0 He_11(x)"
                ),
            ),
        ),
    )
    def test_hermiteE_str(self, inp, tgt):
        res = str(poly.HermiteE(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(
        ("inp", "tgt"),
        (
            ([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"),
            ([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"),
            (
                arange(12),
                (
                    "0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + "
                    "4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + "
                    "8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n"
                    "11.0 L_11(x)"
                ),
            ),
        ),
    )
    def test_laguerre_str(self, inp, tgt):
        res = str(poly.Laguerre(inp))
        assert_equal(res, tgt)
Example #48
0
import math as m
from numpy.core import arange
from matplotlib import pyplot as plt
import pylab

for tau in [0.1, 0.2, 0.25]:
    y = 2
    z = 1
    y_eiler_arr = [y]
    z_eiler_arr = [z]

    t_arr = arange(0, 100, tau)

    for t in t_arr:
        print(f"t: {t}")
        y = y + tau * (-y + 0.999 * z)
        z = z + tau * (-0.001 * z)
        y_eiler_arr.append(y)
        z_eiler_arr.append(z)

    plt.plot(y_eiler_arr, z_eiler_arr, label=f'tau: {round(tau, 2)}')

plt.legend()
plt.show()
Example #49
0
 def test_unusual_order_negative_stride(self):
     a = arange(12).reshape(3, 4)
     b = a.T[::-1]
     low, high = utils.byte_bounds(b)
     assert_equal(high - low, b.size * b.itemsize)
Example #50
0
from numpy import core as np, savetxt, loadtxt

arr = np.arange(200).reshape((2, 5, 4, 5))

with open('/Users/me/Documents/code/python/own/tmp/rse.txt', "w+") as f:
    for each_3d in arr:
        for each_2d in each_3d:
            savetxt(f, each_2d)

with open('/Users/me/Documents/code/python/own/tmp/rse.txt', "r+") as f:
    other_arr = loadtxt(f)
    reshaped_arr = other_arr.reshape((2, 5, 4, 5))

    print(reshaped_arr)
Example #51
0
            self.array.__setattr__(attr, value)
        except AttributeError:
            object.__setattr__(self, attr, value)

    # Only called after other approaches fail.
    def __getattr__(self, attr):
        if (attr == 'array'):
            return object.__getattribute__(self, attr)
        return self.array.__getattribute__(attr)


#############################################################
# Test of class container
#############################################################
if __name__ == '__main__':
    temp = reshape(arange(10000), (100, 100))

    ua = container(temp)
    # new object created begin test
    print dir(ua)
    print shape(ua), ua.shape  # I have changed Numeric.py

    ua_small = ua[:3, :5]
    print ua_small
    ua_small[
        0, 0] = 10  # this did not change ua[0,0], which is not normal behavior
    print ua_small[0, 0], ua[0, 0]
    print sin(ua_small) / 3. * 6. + sqrt(ua_small**2)
    print less(ua_small, 103), type(less(ua_small, 103))
    print type(ua_small * reshape(arange(15), shape(ua_small)))
    print reshape(ua_small, (5, 3))
Example #52
0
import numpy as np
from numpy.core import arange

nums = np.array([1, 2, 3, 4, 5])
print(nums.shape)
print(nums.dtype)

nums = np.array(arange(10))
print(nums.shape[0])
print(nums)

two_demension = np.array([[1, 2, 3], ["i", "m", 3], [4, 5, 6]])
print(two_demension.shape)
print(two_demension)
two_demension = np.array([[1, 2, 3], ["i", "m", 3, 4], [4, 5, 6]])
print(two_demension.shape)
print(two_demension)
two_demension = np.array([[1, 2, 3], [4, 5, 6]])
print(two_demension.shape)
print(two_demension)

three_demension = np.array([[[1, 2, 3], [4, 5, 6]], [[3, 4, 5], [6, 7, 8]]])
print(three_demension.shape)
print(three_demension)

### 结构数组
header = np.dtype({
    "names": ["name", "price", "area", "age"],
    "formats": ["U10", "f", "f", "i"]
})