Example #1
0
def _leastSquaresFit(model, parameters, data, max_iterations=None, stopping_limit = 0.005):
    """General non-linear least-squares fit using the
    Levenberg-Marquardt algorithm and automatic derivatives."""
    
    n_param = len(parameters)
    p = ()
    i = 0
    for param in parameters:
        p = p + (_DerivVar(param, i),)
        i = i + 1
    id = num.identity(n_param)
    l = 0.001
    chi_sq, alpha = _chiSquare(model, p, data)
    niter = 0
    while 1:
        delta = solveLinEq(alpha+l*num.diagonal(alpha)*id,-0.5*num.array(chi_sq[1]))
        next_p = map(lambda a,b: a+b, p, delta)
        next_chi_sq, next_alpha = _chiSquare(model, next_p, data)
        if next_chi_sq > chi_sq:
            l = 10.*l
        else:
            l = 0.1*l
            if chi_sq[0] - next_chi_sq[0] < stopping_limit: break
            p = next_p
            chi_sq = next_chi_sq
            alpha = next_alpha
        niter = niter + 1
        if max_iterations is not None and niter == max_iterations:
            pass
    return map(lambda p: p[0], next_p), next_chi_sq[0]
Example #2
0
    def _leastSquare(self, data, models, iterLimit=None, chiLimit=1e-3):
        """Least-square fitting. Adapted from the original code by Konrad Hinsen."""

        normf = 100.0 / numpy.max(data)
        data *= normf

        params = [50.0] * len(models)
        id = numpy.identity(len(params))
        chisq, alpha = self._chiSquare(data, models, params)
        l = 0.001

        niter = 0
        while True:

            CHECK_FORCE_QUIT()

            niter += 1
            delta = solveLinEq(alpha + l * numpy.diagonal(alpha) * id,
                               -0.5 * numpy.array(chisq[1]))
            next_params = list(map(lambda a, b: a + b, params, delta))

            for x in range(len(next_params)):
                if next_params[x] < 0.0:
                    next_params[x] = 0.0

            next_chisq, next_alpha = self._chiSquare(data, models, next_params)
            if next_chisq[0] > chisq[0]:
                l = 5.0 * l
            elif chisq[0] - next_chisq[0] < chiLimit:
                break
            else:
                l = 0.5 * l
                params = next_params
                chisq = next_chisq
                alpha = next_alpha

            if iterLimit and niter == iterLimit:
                break

        next_params /= normf

        return next_params
Example #3
0
 def _leastSquare(self, data, models, iterLimit=None, chiLimit=1e-3):
     """Least-square fitting. Adapted from the original code by Konrad Hinsen."""
     
     normf = 100./numpy.max(data)
     data *= normf
     
     params = [50.] * len(models)
     id = numpy.identity(len(params))
     chisq, alpha = self._chiSquare(data, models, params)
     l = 0.001
     
     niter = 0
     while True:
         
         CHECK_FORCE_QUIT()
         
         niter += 1
         delta = solveLinEq(alpha+l*numpy.diagonal(alpha)*id,-0.5*numpy.array(chisq[1]))
         next_params = map(lambda a,b: a+b, params, delta)
         
         for x in range(len(next_params)):
             if next_params[x] < 0.:
                 next_params[x] = 0.
         
         next_chisq, next_alpha = self._chiSquare(data, models, next_params)
         if next_chisq[0] > chisq[0]:
             l = 5.*l
         elif chisq[0] - next_chisq[0] < chiLimit:
             break
         else:
             l = 0.5*l
             params = next_params
             chisq = next_chisq
             alpha = next_alpha
         
         if iterLimit and niter == iterLimit:
             break
     
     next_params /= normf
     
     return next_params
Example #4
0
def _leastSquaresFit(model, parameters, data, maxIterations=None, limit=1e-7):
    """General non-linear least-squares fit using the
    Levenberg-Marquardt algorithm and automatic derivatives.
    Originally developed by Konrad Hinsen.
    """

    n_param = len(parameters)
    p = ()
    i = 0
    for param in parameters:
        p = p + (_DerivVar(param, i),)
        i = i + 1
    id = numpy.identity(n_param)
    l = 0.001
    chi_sq, alpha = _chiSquare(model, p, data)
    niter = 0

    while True:
        niter += 1

        delta = solveLinEq(
            alpha + l * numpy.diagonal(alpha) * id, -0.5 * numpy.array(chi_sq[1])
        )
        next_p = list(map(lambda a, b: a + b, p, delta))

        next_chi_sq, next_alpha = _chiSquare(model, next_p, data)
        if next_chi_sq > chi_sq:
            l = 10.0 * l
        elif chi_sq[0] - next_chi_sq[0] < limit:
            break
        else:
            l = 0.1 * l
            p = next_p
            chi_sq = next_chi_sq
            alpha = next_alpha

        if maxIterations and niter == maxIterations:
            break

    return [p[0] for p in next_p], next_chi_sq[0]
Example #5
0
def _leastSquaresFit(model, parameters, data, maxIterations=None, limit=1e-7):
    """General non-linear least-squares fit using the
        Levenberg-Marquardt algorithm and automatic derivatives.
        Originally developed by Konrad Hinsen.
    """

    n_param = len(parameters)
    p = ()
    i = 0
    for param in parameters:
        p = p + (_DerivVar(param, i),)
        i = i + 1
    id = numpy.identity(n_param)
    l = 0.001
    chi_sq, alpha = _chiSquare(model, p, data)
    niter = 0

    while True:
        niter += 1

        delta = solveLinEq(alpha + l * numpy.diagonal(alpha) * id, -0.5 * numpy.array(chi_sq[1]))
        next_p = map(lambda a, b: a + b, p, delta)

        next_chi_sq, next_alpha = _chiSquare(model, next_p, data)
        if next_chi_sq > chi_sq:
            l = 10.0 * l
        elif chi_sq[0] - next_chi_sq[0] < limit:
            break
        else:
            l = 0.1 * l
            p = next_p
            chi_sq = next_chi_sq
            alpha = next_alpha

        if maxIterations and niter == maxIterations:
            break

    return map(lambda p: p[0], next_p), next_chi_sq[0]