def calcTvalue(p, df):
    t = None
    if (df == 1):
        t = math.cos(p*math.pi/2.)/math.sin(p*math.pi/2.)
    elif (df == 2):
        t = math.sqrt(2./(p*(2. - p)) - 2.)
    else:
        a = 1./(df - 0.5)
        b = 48./(a*a)
        c = ((20700.*a/b - 98.)*a - 16.)*a + 96.36
        d = ((94.5/(b + c) - 3.)/b + 1.)*math.sqrt(a*math.pi*0.5)*df
        x = d*p
        y = pow(x, 2./df)
        if (y > 0.05 + a):
            x = Norm_z(0.5*(1. - p))
            y = x*x
            if (df < 5.): 
                c = c + 0.3*(df - 4.5)*(x + 0.6)
            c = (((0.05*d*x - 5.)*x - 7.)*x - 2.)*x + b + c
            y = (((((0.4*y + 6.3)*y + 36.)*y + 94.5)/c - y - 3.)/b + 1.)*x
            y = a*y*y
            if (y > 0.002): 
                y = math.exp(y) - 1.
            else:
                y = 0.5*y*y + y
            t = sqrt(df*y)
        else:
            y = ((1./(((df + 6.)/(df*y) - 0.089*d - 0.822)*(df + 2.)*3.) + 0.5/(df + 4.))*y - 1.)*(df + 1.)/(df + 2.) + 1./y;
            t = math.sqrt(df*y)
    return t
    def SmootBound_LSW(self, myMDP, Gamma, countXVec, beta, startDist):
        lInfty=int(numpy.linalg.norm(countXVec, Inf))

        Vals=[]
        for k in range(lInfty):
            Vals.append(self.varPhi_w(countXVec, k, Gamma)*math.exp(-k*beta))
        upperBound=numpy.max(Vals)  
        return upperBound
Example #3
0
    def SmootBound_LSW(self, myMDP, Gamma, countXVec, beta, startDist):
        lInfty = int(numpy.linalg.norm(countXVec, Inf))

        Vals = []
        for k in range(lInfty+1):
            Vals.append(self.varPhi_w(countXVec, k, Gamma) * math.exp(-k*beta))
        upperBound = numpy.max(Vals)
        return upperBound
Example #4
0
 def SmoothBound_LSL(self,featurmatrix, myMDP, countXVec, rho, regCoef,beta,numTrajectories):
     normPhi = numpy.linalg.norm(featurmatrix,2)
     maxRho = numpy.linalg.norm(rho,Inf)
     c_lambda = normPhi*maxRho/(math.sqrt(2*regCoef))
     #print('===============================================')
     #print(regCoef)
     l2Rho = numpy.linalg.norm(rho)
     phi_k = 0
     Vals = []
     for k in range(0, numTrajectories+1):
         minVal=0
         for s in range(len(myMDP.getStateSpace())):
             minVal = minVal+rho[s] * min(countXVec[s]+k, numTrajectories)
         phi_k = c_lambda*math.sqrt(minVal)+l2Rho
         Vals.append((math.pow(phi_k,2))*math.exp(-k*beta))    
     upperBound=max(Vals)
     return upperBound
 def computeAggregateSmoothBound(self, z,beta, s,mdp,distance_upper_bound):
     partitionPoint=int((len(z)+s)/2)
     a= int(s/beta)
     #rho=self.computeRho(partitionPoint, Dists,a)
     temp_1=0
     k=0
     t_0=partitionPoint+(k+1)*s
     tempList=[]
     #print(str(t_0)+" "+str(len(z)))
     while t_0 <=len(z):
         rho=self.computeRho(z, t_0 , a, mdp,distance_upper_bound)
         temp_2=rho*math.exp(-beta*k)
         tempList.append(temp_2)
         temp_1=max(temp_1, temp_2)
         k+=1
         t_0=partitionPoint+(k+1)*s
     #print(tempList)
     return 2*temp_1
 def SmoothBound_LSL(self,featurmatrix, myMDP, countXVec, rho, regCoef,beta,numTrajectories):
     normPhi=numpy.linalg.norm(featurmatrix)
     maxRho=numpy.linalg.norm(rho,Inf)
     c_lambda=normPhi*maxRho/(math.sqrt(2*regCoef))
     #print('===============================================')
     #print(regCoef)
     l2Rho=numpy.linalg.norm(rho)
     phi_k=0
     Vals=[]
     for k in range(0,numTrajectories):
         minVal=0
         for s in range(len(myMDP.getStateSpace())-1):
             minVal=minVal+rho[s]*min(countXVec[s]+k,numTrajectories)
         phi_k=c_lambda*math.sqrt(minVal)+l2Rho
         Vals.append((math.pow(phi_k,2))*math.exp(-k*beta))    
     upperBound=max(Vals)
     #print('Smooth upper bound= '+str(upperBound))  
     return upperBound  
Example #7
0
    def computeAggregateSmoothBound(self, z, beta, s, mdp, distance_upper_bound):

        partitionPoint=int((len(z)+s)/2)
        a= int(s/beta)
        #rho=self.computeRho(partitionPoint, Dists,a)
        temp_1=0
        k=0
        t_0=partitionPoint+(k+1)*s
        tempList=[]
        #print(str(t_0)+" "+str(len(z)))
        while t_0 <=len(z):
            rho=self.computeRho(z, t_0 , a, mdp,distance_upper_bound)
            temp_2=rho*math.exp(-beta*k)
            tempList.append(temp_2)
            temp_1=max(temp_1, temp_2)
            k+=1
            t_0=partitionPoint+(k+1)*s
        #print(tempList)
        return 2*temp_1
Example #8
0
def f(x):
    f = (math.exp(-x * x / 2)) / math.sqrt(2.0 * math.pi)
    return f
Example #9
0
def exponen(x):
    return math.exp(x)
def f(inp):
    return (math.exp(-inp * inp / 2)) / math.sqrt(2.0 * math.pi)
def run_fitting(i_img):  # for this thesis just batch simulations, no fitting.
    # passing the simulation through the fitting mechanism
    # still useful for processing experimental and
    # simulation patterns simultaneously

    global first_run
    global batch_sim

    global init_radius
    global init_height
    global init_height_flattening_ratio
    global init_lattice_length
    global init_damping_length
    global init_disorder_parameter
    global init_beam_intensity

    if batch_sim == True:  # setting the simulation parameters
        d_eff = 11.6 * (0.1 * (i_img - 11)) / 150
        init_lattice_length = 2 * np.pi / (0.628 +
                                           1.499 * math.exp(-d_eff / 3.31))
        init_height = 1.519 + 1.367 * d_eff - 0.038 * (d_eff**2)
        init_radius = init_height / 3.1
        init_height_flattening_ratio = 0.66
        init_disorder_parameter = 0.25
        init_damping_length = 30 * nm
        init_beam_intensity = 4.15e+09

    real_data = load_real_data(i_img)

    fit_objective = ba.FitObjective()
    fit_objective.addSimulationAndData(get_simulation, real_data)

    fit_objective.initPrint(1)
    fit_objective.initPlot(1, PlotObserver(
    ))  #plotting frequency on screen (increase if OpenGL error)

    params = ba.Parameters(
    )  #parameter limits only relevant for full fitting, otherwise ignored

    min_height = 0.1
    max_height = 20
    min_lattice_length = 0.1
    max_lattice_length = 20
    min_radius = 0.1
    max_radius = 20
    min_damping_length = 10
    max_damping_length = 1000
    min_disorder_parameter = 0.1
    max_disorder_parameter = 0.5
    min_beam_intensity = 1e+8
    max_beam_intensity = 1e+12

    params.add("radius",
               value=init_radius,
               min=min_radius,
               max=max_radius,
               step=0.1 * nm,
               vary=True)
    params.add("height",
               value=init_height,
               min=min_height,
               max=max_height,
               step=0.1 * nm,
               vary=True)
    params.add("height_flattening_ratio",
               value=init_height_flattening_ratio,
               min=0.55,
               max=0.75,
               step=0.01,
               vary=True)
    params.add("lattice_length",
               value=init_lattice_length,
               min=min_lattice_length,
               max=max_lattice_length,
               step=0.1 * nm,
               vary=True)
    params.add("damping_length",
               value=init_damping_length,
               min=min_damping_length,
               max=max_damping_length,
               step=10 * nm,
               vary=True)
    params.add("disorder_parameter",
               value=init_disorder_parameter,
               min=min_disorder_parameter,
               max=max_disorder_parameter,
               step=0.01,
               vary=True)
    params.add("beam_intensity",
               init_beam_intensity,
               min=min_beam_intensity,
               max=max_beam_intensity,
               vary=False)

    minimizer = ba.Minimizer()
    minimizer.setMinimizer("Test")  # normal simulation (no fitting)
    #minimizer.setMinimizer("Minuit2", "Migrad", "MaxFunctionCalls=0;Strategy=2;")  # minimizer for fitting

    result = minimizer.minimize(fit_objective.evaluate,
                                params)  # runs the simulation
    fit_objective.finalize(result)

    fig_name = output_folder + 'fitting_img_#32_' + repr(i_img) + '.png'
    plt.savefig(fig_name, dpi=500)
    plt.close(1)

    print("Fitting completed.")
    print("chi2:", result.minValue())
    for fitPar in result.parameters():
        print(fitPar.name(), fitPar.value, fitPar.error)

    experimental_data = fit_objective.experimentalData()
    simulation_data = fit_objective.simulationResult()
    difference = fit_objective.relativeDifference()

    zmin = 0.1  #  range of the colormap
    zmax = 100

    mpl.rcParams['image.cmap'] = 'jet'  #  saves figures in jet colormap

    plt.figure(2, figsize=(8, 6))
    ba.plot_colormap(experimental_data,
                     title="Experimental data",
                     zmin=zmin,
                     zmax=zmax,
                     units=ba.AxesUnits.QSPACE,
                     xlabel=None,
                     ylabel=None,
                     zlabel='',
                     aspect=None)
    fig_name = output_folder + 'exp_data_#32_' + repr(i_img) + '_jet' + '.png'
    plt.savefig(fig_name, dpi=500)
    plt.close(2)

    plt.figure(3, figsize=(8, 6))
    ba.plot_colormap(simulation_data,
                     title="Simulation result",
                     zmin=zmin,
                     zmax=zmax,
                     units=ba.AxesUnits.QSPACE,
                     xlabel=None,
                     ylabel=None,
                     zlabel='',
                     aspect=None)
    fig_name = output_folder + 'sim_data_#32_' + repr(i_img) + '_jet' + '.png'
    plt.savefig(fig_name, dpi=500)
    plt.close(3)

    mpl.rcParams[
        'image.cmap'] = 'nipy_spectral'  #saves figures in spectral colormap

    plt.figure(4, figsize=(8, 6))
    ba.plot_colormap(experimental_data,
                     title="Experimental data",
                     zmin=zmin,
                     zmax=zmax,
                     units=ba.AxesUnits.QSPACE,
                     xlabel=None,
                     ylabel=None,
                     zlabel='',
                     aspect=None)
    fig_name = output_folder + 'exp_data_#32_' + repr(
        i_img) + '_spectrum' + '.png'
    plt.savefig(fig_name, dpi=500)
    plt.close(4)

    plt.figure(5, figsize=(8, 6))
    ba.plot_colormap(simulation_data,
                     title="Simulation result",
                     zmin=zmin,
                     zmax=zmax,
                     units=ba.AxesUnits.QSPACE,
                     xlabel=None,
                     ylabel=None,
                     zlabel='',
                     aspect=None)
    fig_name = output_folder + 'sim_data_#32_' + repr(
        i_img) + '_spectrum' + '.png'
    plt.savefig(fig_name, dpi=500)
    plt.close(5)
Example #12
0
"""
Euler method solving RC circuit ODE.

"""
from numpy import array, arange, zeros, empty, linalg, math
import pylab as pl
rc = 2.0
dt = 0.5
n = 1000
t = 0.0
q = 1.0
qt = []
qt0 = []
time = []
for i in range(n):
    t = t + dt
    q = q - q * dt / rc
    q0 = math.exp(-t / rc)
    qt.append(q)
    qt0.append(q0)
    time.append(t)

pl.plot(time, qt, 'ro', label='Euler')
pl.plot(time, qt0, 'k-', label='Analytical')
pl.xlabel('Time')
pl.ylabel('charge')
pl.xlim(0, 12)
pl.ylim(-0.2, 1.0)
pl.legend(loc='upper right')
pl.show()
Example #13
0
File: b.py Project: grogs84/nwspa
def f(x):
    f = (math.exp(-x*x/2))/math.sqrt(2.0*math.pi)    
    return f
def estimateP(n,Kn):
    P = 1 - math.exp((-6 * Kn**2)/(n**3 + n**2))
    return P
Example #15
0
    def plotTF(self , labelX=True , labelY=True, fontsize=12 , ylim=None, patchColor=None , labelColor=None , 
               multicolor=False ,axes=None ,maxAtoms=None, recenter=None,keepValues=False,
               french=False,Alpha=False,logF=False):
        """ A time Frequency plot routine using Matplotlib
        
            each atom of the approx is plotted in a time-frequency plane with a gray scale for amplitudes
            Many options are available:
            
            - labelX     : whether or not to add the Time label on the X axis
            
            - labelY     : whether or not to add the Frequency label on the Y axis
            
            - fontsize    : the label fontSize
            
            - ylim        : the frequency range of the plot
            
            - patchColor    : specify a single color for all atoms
            
            - maxAtoms    : specify a maximum number of atom to take into account. Usually atoms are ordered by decreasing amplitude due to MP rules, meaning only the most salient atoms will be plotted
            
            - recenter    : a couple of values to offset the time and frequency localization of atoms
            
            - keepValues    : use atom Amplitudes for atom colorations
            
            - french    : all labels in french
            
            - Alpha     : use transparency
            
            - logF        : frequency axis in logarithmic scale
            
        """
#        plt.figure()
        if french:
            labx = "Temps (s)"
            laby = "Frequence (Hz)"
        else:
            labx = "Time (s)"
            laby = "Frequency (Hz)"
            
        Fs = self.samplingFrequency
        # first loop to recover max value
        maxValue = 0
        maxFreq = 1.0
        minFreq = 22000.0
        if not keepValues:
            valueArray = array([math.log10(abs(atom.getAmplitude())) for atom in self.atoms])
        else:
            valueArray = array([abs(atom.getAmplitude()) for atom in self.atoms])
        if multicolor:
            cmap = cc.LinearSegmentedColormap('jet',abs(valueArray) )
            for atom in self.atoms:
                if abs(atom.mdct_value) > maxValue:
                    maxValue = abs(atom.mdct_value)
        
        # normalize to 0 -> 1
#        if min(valueArray) < 0:
        if len(valueArray) > 0 and not keepValues:
            valueArray = valueArray - min(valueArray)
            valueArray = valueArray/max(valueArray)
        
        # Get target axes
        if axes is None:
            axes = plt.gca()
        
        # normalize the colors
#        if multicolor:
#            normedValues = cc.Normalize(valueArray)
        
        if maxAtoms is not None:        
            maxTom = min(maxAtoms,len(self.atoms))
        else:
            maxTom = len(self.atoms)
            
        # Deal with static offsets 
        if recenter is not None:
            yOffset= recenter[0]
            xOffset= recenter[1] 
        else:
            yOffset,xOffset = 0,0
        
#        print yOffset,xOffset
        
        if Alpha:
            alphaCoeff=0.6
        else:
            alphaCoeff=1
        patches = []
        colors = []
        for i in range(maxTom):
            atom = self.atoms[i]
            L = atom.length
            K = L/2
            freq = atom.frequencyBin
            f = float(freq)*float(Fs)/float(L)
            bw = ( float(Fs) / float(K) ) #/ 2
            p  = float(atom.timePosition + K) / float(Fs)
            l  = float(L - K/2) / float(Fs)
#            print "f =  " ,f , " Hz"
            if f>maxFreq:
                maxFreq = f+bw+bw
            if f < minFreq:
                minFreq = f-bw-10*bw    
                
#            xy = p, f-bw,
            xy = p - xOffset, f - yOffset,
            width, height = l, bw
#            xy = p - xOffset, log10(f) - yOffset,
            
            if logF: 
                xy = p - xOffset , (12*log2(f - yOffset))
                               
                height = 1.0 # BUGFIX
           
#            print xy , f
            colorvalue = math.sqrt(valueArray[i])

            if multicolor:
                patchtuplecolor = (math.sqrt(colorvalue), 
                                   math.exp(-((colorvalue - 0.35)**2)/(0.15)), 
                                   1-math.sqrt(colorvalue))
                colors.append(colorvalue)
            else:
                if patchColor is None:
                    patchtuplecolor = (1-math.sqrt(colorvalue),1- math.sqrt(colorvalue),1- math.sqrt(colorvalue))
                    colors.append(colorvalue)
                else:
                    patchtuplecolor = patchColor
                    colors.append(patchColor)
#            patchtuplecolor = (colorvalue, colorvalue, colorvalue)
#            patch = mpatches.Rectangle(xy, width, height, facecolor=patchtuplecolor, edgecolor=patchtuplecolor , zorder=colorvalue )
#            xy = p + L/2 , f-bw,
            patch = mpatches.Ellipse(xy, width, height, facecolor=patchtuplecolor, edgecolor=patchtuplecolor , zorder=colorvalue )
            if keepValues:
                patches.append(patch)
            else:
                axes.add_patch(patch)
        
        if keepValues:
            
            # first sort the patches by values
            sortedIndexes = valueArray.argsort()
            PatchArray = array(patches)
            p = PatchCollection(PatchArray[sortedIndexes].tolist(),linewidths=0.,cmap=matplotlib.cm.copper_r,match_original=False, alpha=alphaCoeff)
    #        print array(colors).shape
            p.set_array(valueArray[sortedIndexes])
            
            axes.add_collection(p)
        
        if labelColor is None:
            labelColor = 'k'
        
        # finalize graphic options
        axes.set_xlim(0- xOffset , (self.length)/float(Fs)- xOffset)
        if ylim is None:
            axes.set_ylim(max(0 ,minFreq)- yOffset , maxFreq- yOffset)
        else:
            axes.set_ylim(ylim)
        if labelY:
            axes.set_ylabel(laby , fontsize=fontsize , color=labelColor)
#            plt.ylabel.set_color(labelColor)
        else:
            plt.setp(axes, 'yticklabels', [])                        
            
        if labelX:
            axes.set_xlabel(labx, fontsize=fontsize)
        else:
            plt.setp(axes, 'xticklabels', [])
        if keepValues:
            plt.colorbar(p)