Example #1
0
def compute_quadratic_state_integral_ALDS(H, x0, T, dt=None):
    ''' Assuming the state x(t) evolves in time according to a linear dynamic:
            dx(t)/dt = H * x(t)
        Compute the following integral:
            int_{0}^{T} x(t)^T * x(t) dt
    '''
    if (dt is None):
        w, V = eig(H)  # H = V*matlib.diagflat(w)*V^{-1}
        print "Eigenvalues H:", np.sort_complex(w).T
        Lambda_inv = matlib.diagflat(1.0 / w)
        e_2T_Lambda = matlib.diagflat(np.exp(2 * T * w))
        int_e_2T_Lambda = 0.5 * Lambda_inv * (e_2T_Lambda - matlib.eye(n))
        #    V_inv = np.linalg.inv(V)
        #    cost = x0.T*(V_inv.T*(int_e_2T_Lambda*(V_inv*x0)))
        V_inv_x0 = np.linalg.solve(V, x0)
        cost = V_inv_x0.T * int_e_2T_Lambda * V_inv_x0
        return cost[0, 0]

    N = int(T / dt)
    x = simulate_ALDS(H, x0, dt, N)
    cost = 0.0
    not_finite_warning_printed = False
    for i in range(N):
        if (np.all(np.isfinite(x[:, i]))):
            cost += dt * (x[:, i].T * x[:, i])[0, 0]
        elif (not not_finite_warning_printed):
            print 'WARNING: x is not finite at time step %d' % (i)  #, x[:,i].T
            not_finite_warning_printed = True
    return cost
Example #2
0
def compute_cost_function_matrix(n, w_x, w_dx, w_d2x, w_d3x, w_d4x):
    ''' Convert the cost function of the CoM state in the cost function
        of the state of the linearized closed-loop dynamic
    '''
    Q_diag = np.matrix(n * [w_x] + n * [w_dx] + n * [w_d2x] + n * [w_d3x] +
                       n * [w_d4x])
    return matlib.diagflat(Q_diag)
Example #3
0
def compute_matrix_exponential_integral(H, T, dt=None):
    ''' Compute the following integral:
            int_{0}^{T} e^{t*H} dt
    '''
    n = H.shape[0]
    if (dt is None):
        w, V = eig(H)
        # H      = V*diagflat(w)*V^{-1}
        # H^{-1} = V*diagflat(1.0/w)*V^{-1}
        V_inv = np.linalg.inv(V)
        H_inv = V * matlib.diagflat(1.0 / w) * V_inv
        e_TH = V * matlib.diagflat(np.exp(T * w)) * V_inv
        return H_inv * (e_TH - matlib.eye(n))

    N = int(T / dt)
    res = matlib.zeros((n, n))
    for i in range(N):
        res += dt * expm(i * dt * H)
    return res
Example #4
0
def convert_cost_function(w_x, w_dx, w_d2x, w_d3x, w_d4x):
    ''' Convert the cost function of the CoM state in the cost function
        of the momentum+force state.
    '''
    nl = 2
    Q_diag  = np.matrix(nl*[w_x] + nl*[w_dx] + nl*[w_d2x] + nl*[w_d3x] + nl*[w_d4x])
    Q_c     = matlib.diagflat(Q_diag)                           # weight matrix for CoM state
    P       = compute_projection_to_com_state()
    Q       = P.T * Q_c * P
    return Q
Example #5
0
def compute_integral_e_t_Lambda_Q_e_t_Lambda(Lambda_diag, Q_diag, T, dt=None):
    ''' Compute the following integral:
            int_{0}^{T} e^{t*Lambda}*Q*e^{t*Lambda} dt
        where both Lambda and Q are diagonal matrices
    '''
    n = Lambda_diag.shape[0]
    if (dt is None):
        # H      = V*diagflat(w)*V^{-1}
        # H^{-1} = V*diagflat(1.0/w)*V^{-1}
        Lambda_inv = matlib.diagflat(1.0 / Lambda_diag)
        e_2_T_Lambda = matlib.diagflat(np.exp(2 * T * Lambda_diag))
        Q = matlib.diagflat(Q_diag)
        return 0.5 * Q * Lambda_inv * (e_2_T_Lambda - matlib.eye(n))

    N = int(T / dt)
    res = matlib.zeros((n, n))
    Lambda = matlib.diagflat(Lambda_diag)
    Q = matlib.diagflat(Q_diag)
    for i in range(N):
        e_t_Lambda = expm(i * dt * Lambda)
        res += dt * (e_t_Lambda * Q * e_t_Lambda)
    return res
Example #6
0
SAVE_DATA = conf.SAVE_DATA
LOAD_DATA = conf.LOAD_DATA  # if 1 it tries to load the gains from the specified binary file

N = int(conf.T_cost_function / conf.dt_cost_function)
dt = conf.dt_cost_function
w_x = conf.w_x
w_dx = conf.w_dx
w_d2x = conf.w_d2x
w_d3x = conf.w_d3x
w_d4x_list = conf.w_d4x_list
x0 = conf.x0
do_plots = conf.do_plots  # if true it shows the plots

K_contact = conf.K_contact
(H, A, B) = compute_integrator_dynamics(matlib.zeros((1, 4)))
Q = matlib.diagflat([w_x, w_dx, w_d2x, w_d3x])
R = matlib.diagflat([1.0])

if (LOAD_DATA):
    try:
        f = open(DATA_DIR + OUTPUT_DATA_FILE_NAME + '.pkl', 'rb')
        optimal_gains = pickle.load(f)
        f.close()
    except:
        print("Impossible to open file",
              DATA_DIR + OUTPUT_DATA_FILE_NAME + '.pkl')
        LOAD_DATA = 0

if (not LOAD_DATA):
    optimal_gains = {}
Example #7
0
    print "Q_diag:", Q_diag
    print "x0:", x0.T

    #    int_e_tH_approx = compute_matrix_exponential_integral(H, T, dt=1e-3)
    #    int_e_tH        = compute_matrix_exponential_integral(H, T)
    #    print "Integral of e^{tH}:\n", int_e_tH
    #    print "Approximated integral of e^{tH}:\n", int_e_tH_approx
    #    print "Approximation error:", np.max(np.abs(int_e_tH_approx-int_e_tH)), '\n'
    #
    #    Lambda_diag = matlib.diag(H)
    #    int_e_t_Lambda_Q_e_t_Lambda        = compute_integral_e_t_Lambda_Q_e_t_Lambda(Lambda_diag, Q_diag, T)
    #    int_e_t_Lambda_Q_e_t_Lambda_approx = compute_integral_e_t_Lambda_Q_e_t_Lambda(Lambda_diag, Q_diag, T, 1e-3)
    #    print "integral e^{t*Lambda}*Q*e^{t*Lambda}:\n", int_e_t_Lambda_Q_e_t_Lambda
    #    print "Approximated integral e^{t*Lambda}*Q*e^{t*Lambda}:\n", int_e_t_Lambda_Q_e_t_Lambda_approx
    #    print "Approximation error:", np.max(np.abs(int_e_t_Lambda_Q_e_t_Lambda_approx-int_e_t_Lambda_Q_e_t_Lambda)), '\n'

    cost_approx = compute_quadratic_state_integral_ALDS(H, x0, T, dt)
    cost = compute_quadratic_state_integral_ALDS(H, x0, T)
    print "Approximated cost is:", cost_approx
    print "Exact cost is:       ", cost
    print "Approximation error: ", abs(cost - cost_approx), '\n'

    Q = matlib.diagflat(Q_diag)
    Q_inv = matlib.diagflat(1.0 / Q_diag)
    cost_approx = compute_weighted_quadratic_state_integral_ALDS(
        H, x0, T, Q, Q_inv, dt)
    cost = compute_weighted_quadratic_state_integral_ALDS(H, x0, T, Q, Q_inv)
    print "Approximated cost is:", cost_approx
    print "Exact cost is:       ", cost
    print "Approximation error: ", abs(cost - cost_approx)
Example #8
0
 def __init__(self, hyp):
     self.mean = hyp['mean']
     self.cov = np.exp(hyp['cov'][:-1])
     self.covd = np.asmatrix(np.diagflat(1/self.cov))
     self.sf2 = np.exp(2*hyp['cov'][-1])
     self.lik = hyp['lik']