Example #1
0
File: lab_3.py Project: ChMcg/CG
 def recalc(self):
     self.points.clear()
     for x in linspace(0, 1, 10):
         for y in linspace(0, 1, 10):
             self.points.append(self.surface.calculate(x, y))
     self.m = matrix(self.points)
     self.m.shape = (10, 10)
Example #2
0
def kraus_to_choi(kraus_list):
    """
    Takes a list of Kraus operators and returns the Choi matrix for the channel
    represented by the Kraus operators in `kraus_list`
    """
    kraus_mat_list = list(map(lambda x: matrix(x.data.todense()), kraus_list))
    op_len = len(kraus_mat_list[0])
    op_rng = range(op_len)
    choi_blocks = array([[sum([op[:, c_ix] * array([op.H[r_ix, :]])
                               for op in kraus_mat_list])
                          for r_ix in op_rng]
                         for c_ix in op_rng])
    return Qobj(inpt=hstack(hstack(choi_blocks)),
                dims=[kraus_list[0].dims, kraus_list[0].dims])
Example #3
0
def kraus_to_choi(kraus_list):
    """
    Takes a list of Kraus operators and returns the Choi matrix for the channel
    represented by the Kraus operators in `kraus_list`
    """
    kraus_mat_list = list(map(lambda x: matrix(x.data.todense()), kraus_list))
    op_len = len(kraus_mat_list[0])
    op_rng = range(op_len)
    choi_blocks = array([[sum([op[:, c_ix] * array([op.H[r_ix, :]])
                               for op in kraus_mat_list])
                          for r_ix in op_rng]
                         for c_ix in op_rng])
    return Qobj(inpt=hstack(hstack(choi_blocks)),
                dims=[kraus_list[0].dims, kraus_list[0].dims])
Example #4
0
File: lab_3.py Project: ChMcg/CG
 def __init__(self, parent):
     super().__init__(parent)
     self.setMouseTracking(True)
     self.setGeometry(parent.geometry())
     self.mainPen = QtGui.QPen(QtGui.QColor(0x0d47a1), 2)
     self.highlightPen = QtGui.QPen(QtGui.QColor(0xFFA0A0), 3)
     self.surface_points = BilinearSurface.default_points
     self.current_rotation: Tuple[int] = (0, 0, 0)
     self.surface = BilinearSurface(self.surface_points)
     self.points: List[v3] = []
     self.m: matrix = matrix([])
     self.recalc()
     self.center = QtCore.QPoint(self.geometry().height() // 2,
                                 self.geometry().width() // 2)
Example #5
0
def kron(a, b):
    """
    Kronecker product of two arrays.

    Computes the Kronecker product, a composite array made of blocks of the
    second array scaled by the first.

    Parameters
    ----------
    a, b : array_like

    Returns
    -------
    out : ndarray

    See Also
    --------
    outer : The outer product

    Notes
    -----
    The function assumes that the number of dimensions of `a` and `b`
    are the same, if necessary prepending the smallest with ones.
    If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
    the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
    The elements are products of elements from `a` and `b`, organized
    explicitly by::

        kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

    where::

        kt = it * st + jt,  t = 0,...,N

    In the common 2-D case (N=1), the block structure can be visualized::

        [[ a[0,0]*b,   a[0,1]*b,  ... , a[0,-1]*b  ],
         [  ...                              ...   ],
         [ a[-1,0]*b,  a[-1,1]*b, ... , a[-1,-1]*b ]]


    Examples
    --------
    >>> np.kron([1,10,100], [5,6,7])
    array([  5,   6,   7, ..., 500, 600, 700])
    >>> np.kron([5,6,7], [1,10,100])
    array([  5,  50, 500, ...,   7,  70, 700])

    >>> np.kron(np.eye(2), np.ones((2,2)))
    array([[1.,  1.,  0.,  0.],
           [1.,  1.,  0.,  0.],
           [0.,  0.,  1.,  1.],
           [0.,  0.,  1.,  1.]])

    >>> a = np.arange(100).reshape((2,5,2,5))
    >>> b = np.arange(24).reshape((2,3,4))
    >>> c = np.kron(a,b)
    >>> c.shape
    (2, 10, 6, 20)
    >>> I = (1,3,0,2)
    >>> J = (0,2,1)
    >>> J1 = (0,) + J             # extend to ndim=4
    >>> S1 = (1,) + b.shape
    >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
    >>> c[K] == a[I]*b[J]
    True

    """
    b = asanyarray(b)
    a = array(a, copy=False, subok=True, ndmin=b.ndim)
    ndb, nda = b.ndim, a.ndim
    nd = max(ndb, nda)

    if (nda == 0 or ndb == 0):
        return _nx.multiply(a, b)

    as_ = a.shape
    bs = b.shape
    if not a.flags.contiguous:
        a = reshape(a, as_)
    if not b.flags.contiguous:
        b = reshape(b, bs)

    # Equalise the shapes by prepending smaller one with 1s
    as_ = (1, ) * max(0, ndb - nda) + as_
    bs = (1, ) * max(0, nda - ndb) + bs

    # Compute the product
    a_arr = a.reshape(a.size, 1)
    b_arr = b.reshape(1, b.size)
    is_any_mat = isinstance(a_arr, matrix) or isinstance(b_arr, matrix)
    # In case of `mat`, convert result to `array`
    result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat))

    # Reshape back
    result = result.reshape(as_ + bs)
    transposer = _nx.arange(nd * 2).reshape([2, nd]).ravel(order='f')
    result = result.transpose(transposer)
    result = result.reshape(_nx.multiply(as_, bs))

    return result if not is_any_mat else matrix(result, copy=False)
Example #6
0
import numpy as np
from numpy.matrixlib.defmatrix import matrix

print('\n')
print('What is the size of your Matrix')
a=int(input('Enter Dimension 1: '))
b=int(input('Enter Dimension 2: '))
# Create empty matrix with user defined inputs
m=np.empty([a,b],dtype=float)
m=matrix(m)

for i in range(a):
    for j in range(b):
        m[i,j]=float(input('Enter Matrix dim [{},{}]: '.format(i+1,j+1)))


print('What would you like to do?')
print('Enter the number corresponding to the choice you make.\n')
userInput=int(input('1.) Solve a system of equations.'))

if userInput==1:
    print("Enter the values for matrix 'b' of Ax=b. You already entered 'A'")
    bmatrix=np.empty([a,1])
    bmatrix=matrix(bmatrix)
    for i in range(a):
        bmatrix[i,0]=float(input('Enter b Matrix dim [{},{}]: '.format(i+1,1)))
    
solution = np.linalg.solve(m,bmatrix)
print(solution)
Example #7
0
def iteration_function(
        euclidean_matrix, centroid_value, duplicate_list, cluster_points,
        list_array):  #---------------> iteration for finding the clusters.
    col = len(centroid_value)
    row = len(list_array)
    Distance_matrix = matrix([[None for x in range(col)] for x in range(row)])
    final_distance_list = []
    for k in range(len(list_array)):
        for i in range(len(centroid_value)):
            distance = [
                pow((point1 - point2), 2)
                for (point1, point2) in zip(list_array[k], centroid_value[i])
            ]  # finding the distance between the center and other points.
            final_distance = math.sqrt(sum(distance))
            Distance_matrix[k, i] = final_distance
            final_distance_list.append(final_distance)
    # min_val =  Distance_matrix.min(1)
    cluster_number_list = []
    for i in range(row):
        mini = float("inf")
        for j in range(col):
            if Distance_matrix[i, j] <= mini:
                mini = Distance_matrix[i, j]
                variable = j + 1
        cluster_number_list.append(
            variable
        )  # finding the cluster number for each point where point should fall.

    dict = {}
    for length in range(len(list_array)):
        dict[length] = list_array[length]

    mylist = []
    for length2 in range(len(centroid_value)):
        newllist = []
        for length1 in range(len(cluster_number_list)):
            if cluster_number_list[length1] == length2 + 1:
                newllist.append(length1)
        mylist.append(newllist)
    finalmean = []
    for item in (mylist):
        combine_list = []
        for item1 in range(len(item)):
            for key, value in dict.iteritems():
                if key == item[item1]:
                    combine_list.append(value)
        mymean = []
        for i in izip_longest(*combine_list):
            sum_element = 0.00
            for item in i:
                sum_element = sum_element + item
                mean = float(sum_element) / len(
                    i
                )  # finding the mean distance for all the points of one cluster.
            mymean.append(mean)
        finalmean.append(mymean)  # forming the list of the new mean distance.
    if duplicate_list != cluster_number_list:  #stoping condition of the iteration .i.e cluster number in new list should not match with the previous list.
        return iteration_function(
            euclidean_matrix, finalmean, cluster_number_list, cluster_points,
            list_array)  #recursively calling the interation fuction.
    else:
        return cluster_number_list  #when new list of the iteration is equale to the previous list. then that list is the final cluster number list.
Example #8
0
import numpy as np
from numpy.matrixlib.defmatrix import matrix

print('\nWhat is the size of your Matrix')
a = int(input('Enter Dimension 1: '))
b = int(input('Enter Dimension 2: '))
# Create empty matrix with user defined inputs
m = np.empty([a, b], dtype=float)
m = matrix(m)

for i in range(a):
    for j in range(b):
        m[i,
          j] = float(input('Enter Matrix dim [{},{}]: '.format(i + 1, j + 1)))

print('What would you like to do?')
print('Enter the number corresponding to the choice you make.\n')
userInput = int(input('1.) Solve a system of equations.'))

if userInput == 1:
    print("Enter the values for matrix 'b' of Ax=b. You already entered 'A'")
    bmatrix = np.empty([a, 1])
    bmatrix = matrix(bmatrix)
    for i in range(a):
        bmatrix[i, 0] = float(
            input('Enter b Matrix dim [{},{}]: '.format(i + 1, 1)))

solution = np.linalg.solve(m, bmatrix)
print(solution)
Example #9
0
 def calculate(self, u: float, w: float):
     a = matrix([1 - u, u])
     b = matrix([[1 - w], [w]])
     m: matrix = a * self.m * b
     return v3.from_matrix(m.item(0, 0))
Example #10
0
 def __init__(self, points: List[v3] = default_points):
     self.m = matrix(points)
def lsh_algo(json_data):  #loading josn file
    list_array = json_data
    len_listarray = len(list_array)
    #making the characteristic matrix
    columns = len_listarray + 20
    rows = 100
    user_list_unicode = [None] * len_listarray
    # print user_list
    for list1 in list_array:
        for user_count in range(len_listarray):
            if user_list_unicode[user_count] == None:
                user_list_unicode[user_count] = list1[
                    0]  # saving the user's name
                break
    user_list = []
    user_list = [x.encode('utf-8') for x in user_list_unicode]
    # print user_list

    A = matrix([[0 for x in range(columns)] for x in range(rows)])
    count = 0
    for i in list_array:
        for j in range(0, len(i[1])):
            A[i[1][j], count] = 1  #update the characteristic matrix
        count += 1
    for x in range(rows):
        i = 1
        j = len_listarray
        while (i < 21):
            hashfun = (3 * x + i) % 100
            while (j < columns):
                A[x, j] = hashfun
                j = j + 1
                break
            i = i + 1
        # print "matrix:",x," ",A[x]


#making of signature matrix
    col = len_listarray
    rowsize = 20
    sign = matrix([[None for x in range(col)] for x in range(rowsize)])
    # print sign
    p = 0
    q = 0
    # print A
    for m in range(rows):
        for n in range(len_listarray):
            # print A[m,n]
            if A[m, n] == 1:
                for p in range(rowsize):
                    if (sign[p, n] == None):
                        sign[p, n] = A[m, len_listarray + p]
                    if (sign[p, n] > A[m, len_listarray + p]):
                        sign[p, n] = A[m, len_listarray + p]

    # print sign      #-------------------> print signature matrix.
    final_output_list = []

    #Forming 5 bands. 4rows/band
    col_size = len_listarray
    rows_size = 4
    bandmatrix1 = matrix([[None for x in range(col_size)]
                          for x in range(rows_size)])
    bandmatrix2 = matrix([[None for x in range(col_size)]
                          for x in range(rows_size)])
    bandmatrix3 = matrix([[None for x in range(col_size)]
                          for x in range(rows_size)])
    bandmatrix4 = matrix([[None for x in range(col_size)]
                          for x in range(rows_size)])
    bandmatrix5 = matrix([[None for x in range(col_size)]
                          for x in range(rows_size)])
    band_no = 1
    k = 0
    a = 0
    b = 0
    c = 0
    d = 0
    for j in range(0, len(sign)):
        if j >= 0 and j < 4:
            bandmatrix1[k] = sign[j]
            k = k + 1
    # print bandmatrix1
        if j >= 4 and j < 8:
            bandmatrix2[a] = sign[j]
            a = a + 1
        if j >= 8 and j < 12:
            bandmatrix3[b] = sign[j]
            b = b + 1
        if j >= 12 and j < 16:
            bandmatrix4[c] = sign[j]
            c = c + 1
        if j >= 16 and j < 20:
            bandmatrix5[d] = sign[j]
            d = d + 1
    # print bandmatrix1
    # print bandmatrix2
    # print bandmatrix3
    # print bandmatrix4
    # print bandmatrix5

    output_list = []
    r = 0
    # for r in range (len(bandmatrix1)):
    for c in range(0, len_listarray):
        for z in range(c + 1, len_listarray):
            if bandmatrix1[r, c] == bandmatrix1[r, z] and bandmatrix1[
                    r + 1, c] == bandmatrix1[r + 1, z] and bandmatrix1[
                        r + 2, c] == bandmatrix1[r + 2, z] and bandmatrix1[
                            r + 3, c] == bandmatrix1[r + 3, z]:
                output_list = []
                # print "bandmatrix1[r,c]: ",bandmatrix1[r,c]
                # print "bandmatrix1[r,z]: ",bandmatrix1[r,z]
                output_list.append(user_list[c])
                output_list.append(user_list[z])
                output_list.sort()
                final_output_list.append(output_list)
                # print output_list
    temp_name = set()
    final_output_list_set = set(map(tuple, final_output_list))
    final_output_list_set = map(list, final_output_list_set)
    for element in range(len(final_output_list_set)):
        # print"*******************", final_output_list_set[element]
        temp_name.add(final_output_list_set[element][0])
        temp_name.add(final_output_list_set[element][1])
    # print temp_name
    s = temp_name
    # print len(final_output_list_set)

    w = 0
    for c1 in range(0, len_listarray):
        for z1 in range(c1 + 1, len_listarray):
            if user_list[c1] != s or user_list[z1] != s:
                # print user_list[c1]
                # print user_list[z1]
                if bandmatrix2[w, c1] == bandmatrix2[w, z1] and bandmatrix2[
                        w + 1, c1] == bandmatrix2[w + 1, z1] and bandmatrix2[
                            w + 2,
                            c1] == bandmatrix2[w + 2, z1] and bandmatrix2[
                                w + 3, c1] == bandmatrix2[w + 3, z1]:
                    output_list = []
                    output_list.append(user_list[c1])
                    output_list.append(user_list[z1])
                    output_list.sort()
                    final_output_list.append(output_list)

    temp_name = set()
    final_output_list_set = set(map(tuple, final_output_list))
    final_output_list_set = map(list, final_output_list_set)
    for element in range(len(final_output_list_set)):
        # print final_output_list_set[element]
        # print len(final_output_list_set)
        temp_name.add(final_output_list_set[element][0])
        temp_name.add(final_output_list_set[element][1])
        # print temp_name
    s = temp_name
    # print s
    # print len(final_output_list_set)
    h = 0
    for c2 in range(0, len_listarray):
        for z2 in range(c2 + 1, len_listarray):
            if user_list[c2] != s or user_list[z2] != s:
                # print user_list[c2]
                # print user_list[z2]
                if bandmatrix3[h, c2] == bandmatrix3[h, z2] and bandmatrix3[
                        h + 1, c2] == bandmatrix3[h + 1, z2] and bandmatrix3[
                            h + 2,
                            c2] == bandmatrix3[h + 2, z2] and bandmatrix3[
                                h + 3, c2] == bandmatrix3[h + 3, z2]:
                    output_list = []
                    output_list.append(user_list[c2])
                    output_list.append(user_list[z2])
                    output_list.sort()
                    final_output_list.append(output_list)

    temp_name = set()
    final_output_list_set = set(map(tuple, final_output_list))
    final_output_list_set = map(list, final_output_list_set)
    for element in range(len(final_output_list_set)):
        # print final_output_list_set[element]
        temp_name.add(final_output_list_set[element][0])
        temp_name.add(final_output_list_set[element][1])
        # print temp_name
    s = temp_name
    # print s
    # print len(final_output_list_set)

    p = 0
    for c3 in range(0, len_listarray):
        for z3 in range(c3 + 1, len_listarray):
            if user_list[c3] != s or user_list[z3] != s:
                # print user_list[c2]
                # print user_list[z2]
                if bandmatrix4[p, c3] == bandmatrix4[p, z3] and bandmatrix4[
                        p + 1, c3] == bandmatrix4[p + 1, z3] and bandmatrix4[
                            p + 2,
                            c3] == bandmatrix4[p + 2, z3] and bandmatrix4[
                                p + 3, c3] == bandmatrix4[p + 3, z3]:
                    output_list = []
                    output_list.append(user_list[c3])
                    output_list.append(user_list[z3])
                    output_list.sort()
                    final_output_list.append(output_list)

    temp_name = set()
    final_output_list_set = set(map(tuple, final_output_list))
    final_output_list_set = map(list, final_output_list_set)
    for element in range(len(final_output_list_set)):
        # print final_output_list_set[element]
        temp_name.add(final_output_list_set[element][0])
        temp_name.add(final_output_list_set[element][1])
        # print temp_name
    s = temp_name
    # print len(final_output_list_set)

    t = 0
    for c4 in range(0, len_listarray):
        for z4 in range(c4 + 1, len_listarray):
            if user_list[c4] != s or user_list[z4] != s:
                # print user_list[c2]
                # print user_list[z2]
                if bandmatrix5[t, c4] == bandmatrix5[t, z4] and bandmatrix5[
                        t + 1, c4] == bandmatrix5[t + 1, z4] and bandmatrix5[
                            t + 2,
                            c4] == bandmatrix5[t + 2, z4] and bandmatrix5[
                                t + 3, c4] == bandmatrix5[t + 3, z4]:
                    output_list = []
                    output_list.append(user_list[c4])
                    output_list.append(user_list[z4])
                    output_list.sort()
                    final_output_list.append(output_list)

    temp_name = set()
    final_output_list_set = set(map(tuple, final_output_list))
    final_output_list_set = map(list, final_output_list_set)
    # if checker == True:
    for element in range(len(final_output_list_set)):
        # if checker == True:
        print final_output_list_set[element]
    # print len(final_output_list_set)
    listing = []
    listing = final_output_list_set