Example #1
0
def ring(x, y, height, thickness, gaussian_width):
    """
    Circular ring (annulus) with Gaussian fall-off after the solid ring-shaped region.
    """
    radius = height / 2.0
    half_thickness = thickness / 2.0

    distance_from_origin = sqrt(x**2 + y**2)
    distance_outside_outer_disk = distance_from_origin - radius - half_thickness
    distance_inside_inner_disk = radius - half_thickness - distance_from_origin

    ring = 1.0 - bitwise_xor(greater_equal(distance_inside_inner_disk, 0.0),
                             greater_equal(distance_outside_outer_disk, 0.0))

    sigmasq = gaussian_width * gaussian_width

    if sigmasq == 0.0:
        inner_falloff = x * 0.0
        outer_falloff = x * 0.0
    else:
        with float_error_ignore():
            inner_falloff = exp(
                divide(
                    -distance_inside_inner_disk * distance_inside_inner_disk,
                    2.0 * sigmasq))
            outer_falloff = exp(
                divide(
                    -distance_outside_outer_disk * distance_outside_outer_disk,
                    2.0 * sigmasq))

    return maximum(inner_falloff, maximum(outer_falloff, ring))
def arc_by_radian(x, y, height, radian_range, thickness, gaussian_width):
    """
    Radial arc with Gaussian fall-off after the solid ring-shaped
    region with the given thickness, with shape specified by the
    (start,end) radian_range.
    """

    # Create a circular ring (copied from the ring function)
    radius = height/2.0
    half_thickness = thickness/2.0

    distance_from_origin = sqrt(x**2+y**2)
    distance_outside_outer_disk = distance_from_origin - radius - half_thickness
    distance_inside_inner_disk = radius - half_thickness - distance_from_origin

    ring = 1.0-bitwise_xor(greater_equal(distance_inside_inner_disk,0.0),greater_equal(distance_outside_outer_disk,0.0))

    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        inner_falloff = x*0.0
        outer_falloff = x*0.0
    else:
        with float_error_ignore():
            inner_falloff = exp(divide(-distance_inside_inner_disk*distance_inside_inner_disk, 2.0*sigmasq))
            outer_falloff = exp(divide(-distance_outside_outer_disk*distance_outside_outer_disk, 2.0*sigmasq))

    output_ring = maximum(inner_falloff,maximum(outer_falloff,ring))

    # Calculate radians (in 4 phases) and cut according to the set range)

    # RZHACKALERT:
    # Function float_error_ignore() cannot catch the exception when
    # both dividend and divisor are 0.0, and when only divisor is 0.0
    # it returns 'Inf' rather than 0.0. In x, y and
    # distance_from_origin, only one point in distance_from_origin can
    # be 0.0 (circle center) and in this point x and y must be 0.0 as
    # well. So here is a hack to avoid the 'invalid value encountered
    # in divide' error by turning 0.0 to 1e-5 in distance_from_origin.
    distance_from_origin += where(distance_from_origin == 0.0, 1e-5, 0)

    with float_error_ignore():
        sines = divide(y, distance_from_origin)
        cosines = divide(x, distance_from_origin)
        arcsines = arcsin(sines)

    phase_1 = where(logical_and(sines >= 0, cosines >= 0), 2*pi-arcsines, 0)
    phase_2 = where(logical_and(sines >= 0, cosines <  0), pi+arcsines,   0)
    phase_3 = where(logical_and(sines <  0, cosines <  0), pi+arcsines,   0)
    phase_4 = where(logical_and(sines <  0, cosines >= 0), -arcsines,     0)
    arcsines = phase_1 + phase_2 + phase_3 + phase_4

    if radian_range[0] <= radian_range[1]:
        return where(logical_and(arcsines >= radian_range[0], arcsines <= radian_range[1]),
                     output_ring, 0.0)
    else:
        return where(logical_or(arcsines >= radian_range[0], arcsines <= radian_range[1]),
                     output_ring, 0.0)
Example #3
0
def arc_by_radian(x, y, height, radian_range, thickness, gaussian_width):
    """
    Radial arc with Gaussian fall-off after the solid ring-shaped
    region with the given thickness, with shape specified by the
    (start,end) radian_range.
    """

    # Create a circular ring (copied from the ring function)
    radius = height/2.0
    half_thickness = thickness/2.0

    distance_from_origin = sqrt(x**2+y**2)
    distance_outside_outer_disk = distance_from_origin - radius - half_thickness
    distance_inside_inner_disk = radius - half_thickness - distance_from_origin

    ring = 1.0-bitwise_xor(greater_equal(distance_inside_inner_disk,0.0),greater_equal(distance_outside_outer_disk,0.0))

    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        inner_falloff = x*0.0
        outer_falloff = x*0.0
    else:
        with float_error_ignore():
            inner_falloff = exp(divide(-distance_inside_inner_disk*distance_inside_inner_disk, 2.0*sigmasq))
            outer_falloff = exp(divide(-distance_outside_outer_disk*distance_outside_outer_disk, 2.0*sigmasq))
            
    output_ring = maximum(inner_falloff,maximum(outer_falloff,ring))

    # Calculate radians (in 4 phases) and cut according to the set range)

    # RZHACKALERT:
    # Function float_error_ignore() cannot catch the exception when
    # both dividend and divisor are 0.0, and when only divisor is 0.0
    # it returns 'Inf' rather than 0.0. In x, y and
    # distance_from_origin, only one point in distance_from_origin can
    # be 0.0 (circle center) and in this point x and y must be 0.0 as
    # well. So here is a hack to avoid the 'invalid value encountered
    # in divide' error by turning 0.0 to 1e-5 in distance_from_origin.
    distance_from_origin += where(distance_from_origin == 0.0, 1e-5, 0)

    with float_error_ignore():
        sines = divide(y, distance_from_origin)
        cosines = divide(x, distance_from_origin)
        arcsines = arcsin(sines)

    phase_1 = where(logical_and(sines >= 0, cosines >= 0), 2*pi-arcsines, 0)
    phase_2 = where(logical_and(sines >= 0, cosines <  0), pi+arcsines,   0)
    phase_3 = where(logical_and(sines <  0, cosines <  0), pi+arcsines,   0)
    phase_4 = where(logical_and(sines <  0, cosines >= 0), -arcsines,     0)
    arcsines = phase_1 + phase_2 + phase_3 + phase_4

    if radian_range[0] <= radian_range[1]:
        return where(logical_and(arcsines >= radian_range[0], arcsines <= radian_range[1]),
                     output_ring, 0.0)
    else:
        return where(logical_or(arcsines >= radian_range[0], arcsines <= radian_range[1]),
                     output_ring, 0.0)
Example #4
0
def erf(x):
    """
    Approximation to the erf-function with fractional error
    everywhere less than 1.2e-7

    @param x: value
    @type  x: float

    @return: value
    @rtype: float
    """
    if x > 10.: return 1.
    if x < -10.: return -1.

    z = abs(x)
    t = 1. / (1. + 0.5 * z)

    r = t * N.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (0.37409196 + \
                                                               t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * \
                                                                                                         (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * \
                                                                                                                                               0.17087277)))))))))

    if x >= 0.:
        return 1. - r
    else:
        return r - 1.
Example #5
0
File: CES.py Project: shao130/sim42
 def FugaM(self, Z, A_i, B_i, A, B):
     L = (1 / (2 * sqrt(2))) * log(
         (Z + B * (1 + sqrt(2))) / (Z + B * (1 - sqrt(2))))
     LogFug = B_i / B * (Z - 1) - log(Z - B) + A / B * (B_i / B -
                                                        2 * A_i / A) * L
     Fug = exp(LogFug)
     return Fug
Example #6
0
File: CES.py Project: shao130/sim42
 def FugaP(self, Z, A, B):
     """ Fugacity Coefficient of Pure Substances"""
     L = (1 / (2 * sqrt(2))) * log(
         (Z + B * (1 + sqrt(2))) / (Z + B * (1 - sqrt(2))))
     LogFug = Z - 1 - log(Z - B) - A / B * L
     Fug = exp(LogFug)
     return Fug
Example #7
0
    def function(self,params):
        """Hyperbolic function."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        thickness = params['thickness']
        gaussian_width = params['smoothing']
        size = params['size']

        half_thickness = thickness / 2.0

        distance_from_vertex_middle = fmod(sqrt(absolute(x**2 - y**2)),size)
        distance_from_vertex_middle = minimum(distance_from_vertex_middle,size - distance_from_vertex_middle)

        distance_from_vertex = distance_from_vertex_middle - half_thickness

        hyperbola = 1.0 - greater_equal(distance_from_vertex,0.0)

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance_from_vertex*distance_from_vertex, 2.0*sigmasq))

        return maximum(falloff, hyperbola)
Example #8
0
def concentricrings(x, y, white_thickness, gaussian_width, spacing):
    """
    Concetric rings with the solid ring-shaped region, then Gaussian fall-off at the edges.
    """

    # To have zero value in middle point this pattern calculates zero-value rings instead of
    # the one-value ones. But to be consistent with the rest of functions the parameters
    # are connected to one-value rings - like half_thickness is now recalculated for zero-value ring:
    half_thickness = ((spacing-white_thickness)/2.0)*greater_equal(spacing-white_thickness,0.0)

    distance_from_origin = sqrt(x**2+y**2)

    distance_from_ring_middle = fmod(distance_from_origin,spacing)
    distance_from_ring_middle = minimum(distance_from_ring_middle,spacing - distance_from_ring_middle)

    distance_from_ring = distance_from_ring_middle - half_thickness

    ring = 0.0 + greater_equal(distance_from_ring,0.0)

    sigmasq = gaussian_width*gaussian_width

    with float_error_ignore():
        falloff = exp(divide(-distance_from_ring*distance_from_ring, 2.0*sigmasq))

    return maximum(falloff,ring)
Example #9
0
def erf(x):
    """
    Approximation to the erf-function with fractional error
    everywhere less than 1.2e-7

    @param x: value
    @type  x: float

    @return: value
    @rtype: float
    """
    if x > 10.: return 1.
    if x < -10.: return -1.

    z = abs(x)
    t = 1. / (1. + 0.5 * z)

    r = t * N.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (0.37409196 + \
                                                               t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * \
                                                                                                         (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * \
                                                                                                                                               0.17087277)))))))))

    if x >= 0.:
        return 1. - r
    else:
        return r - 1.
Example #10
0
    def FugaP(self,Z,A,B):
        """ Fugacity Coefficient of Pure Substances"""
##        print Z-B
        L = ( 1/( 2*sqrt(2) ) ) * log( ( Z +B*(1+sqrt(2) ) ) / ( Z +B*(1-sqrt(2) ) ) )
        LogFug = Z-1 - log(Z-B) - A/B*L
        Fug = exp( LogFug )
        return Fug
Example #11
0
    def function(self,params):
        """Archemidean spiral function."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        thickness = params['thickness']
        gaussian_width = params['smoothing']
        size = params['size']

        half_thickness = thickness/2.0
        spacing = size*2*pi

        distance_from_origin = sqrt(x**2+y**2)
        distance_from_spiral_middle = fmod(spacing + distance_from_origin - size*arctan2(y,x),spacing)

        distance_from_spiral_middle = minimum(distance_from_spiral_middle,spacing - distance_from_spiral_middle)
        distance_from_spiral = distance_from_spiral_middle - half_thickness

        spiral = 1.0 - greater_equal(distance_from_spiral,0.0)

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance_from_spiral*distance_from_spiral, 2.0*sigmasq))

        return maximum(falloff, spiral)
Example #12
0
    def function(self,params):
        """Concentric rings."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        thickness = params['thickness']
        gaussian_width = params['smoothing']
        size = params['size']

        half_thickness = thickness / 2.0

        distance_from_origin = sqrt(x**2+y**2)

        distance_from_ring_middle = fmod(distance_from_origin,size)
        distance_from_ring_middle = minimum(distance_from_ring_middle,size - distance_from_ring_middle)

        distance_from_ring = distance_from_ring_middle - half_thickness

        ring = 1.0 - greater_equal(distance_from_ring,0.0)

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance_from_ring*distance_from_ring, 2.0*sigmasq))

        return maximum(falloff, ring)
Example #13
0
def sigmoid(axis, slope):
    """
    Sigmoid dividing axis into a positive and negative half, 
    with a smoothly sloping transition between them (controlled by the slope).
    
    At default rotation, axis refers to the vertical (y) axis.
    """
    with float_error_ignore():
        return (2.0 / (1.0 + exp(-2.0 * slope * axis))) - 1.0
Example #14
0
def sigmoid(axis, slope):
    """
    Sigmoid dividing axis into a positive and negative half,
    with a smoothly sloping transition between them (controlled by the slope).

    At default rotation, axis refers to the vertical (y) axis.
    """
    with float_error_ignore():
        return (2.0 / (1.0 + exp(-2.0*slope*axis))) - 1.0
Example #15
0
def exponential(x, y, xscale, yscale):
    """
    Two-dimensional oriented exponential decay pattern.
    """
    if xscale == 0.0 or yscale == 0.0:
        return x * 0.0

    with float_error_ignore():
        x_w = divide(x, xscale)
        y_h = divide(y, yscale)
        return exp(-sqrt(x_w * x_w + y_h * y_h))
Example #16
0
def logMean(alpha, beta):
    """
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: standarddev of log-transformed distribution
    @type  beta: float

    @return: mean of the original lognormal distribution
    @rtype: float
    """
    return N.exp(alpha + (beta**2) / 2.)
Example #17
0
def hyperbola(x, y, thickness, gaussian_width, axis):
    """
    Two conjugate hyperbolas with Gaussian fall-off which share the same asymptotes.
    abs(x^2/a^2 - y^2/b^2) = 1 
    As a = b = axis, these hyperbolas are rectangular.
    """

    difference = absolute(x**2 - y**2)
    hyperbola = 1.0 - bitwise_xor(greater_equal(axis**2,difference),greater_equal(difference,(axis + thickness)**2))

    distance_inside_hyperbola = sqrt(difference) - axis
    distance_outside_hyperbola = sqrt(difference) - axis - thickness

    sigmasq = gaussian_width*gaussian_width

    with float_error_ignore():
        inner_falloff = exp(divide(-distance_inside_hyperbola*distance_inside_hyperbola, 2.0*sigmasq))
        outer_falloff = exp(divide(-distance_outside_hyperbola*distance_outside_hyperbola, 2.0*sigmasq))
    
    return maximum(hyperbola,maximum(inner_falloff,outer_falloff))
Example #18
0
def exponential(x, y, xscale, yscale):
    """
    Two-dimensional oriented exponential decay pattern.
    """
    if xscale==0.0 or yscale==0.0:
        return x*0.0
    
    with float_error_ignore():
        x_w = divide(x,xscale)
        y_h = divide(y,yscale)
        return exp(-sqrt(x_w*x_w+y_h*y_h))
Example #19
0
def logSigma(alpha, beta):
    """
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: standarddev of log-transformed distribution
    @type  beta: float

    @return: 'standard deviation' of the original lognormal distribution
    @rtype: float
    """
    return logMean(alpha, beta) * N.sqrt(N.exp(beta**2) - 1.)
Example #20
0
def logMean( alpha, beta ):
    """
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: standarddev of log-transformed distribution
    @type  beta: float

    @return: mean of the original lognormal distribution
    @rtype: float
    """
    return N.exp( alpha + (beta**2)/2. )
Example #21
0
def logMedian( alpha, beta=None ):
    """
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: not needed
    @type  beta: float

    @return: median of the original lognormal distribution
    @rtype: float
    """
    return N.exp( alpha )
Example #22
0
def smooth_rectangle(x, y, rec_w, rec_h, gaussian_width_x, gaussian_width_y):
    """
    Rectangle with a solid central region, then Gaussian fall-off at the edges.
    """

    gaussian_x_coord = abs(x)-rec_w/2.0
    gaussian_y_coord = abs(y)-rec_h/2.0
        
    box_x=less(gaussian_x_coord,0.0)
    box_y=less(gaussian_y_coord,0.0)
    sigmasq_x=gaussian_width_x*gaussian_width_x
    sigmasq_y=gaussian_width_y*gaussian_width_y

    with float_error_ignore():
        falloff_x=x*0.0 if sigmasq_x==0.0 else \
            exp(divide(-gaussian_x_coord*gaussian_x_coord,2*sigmasq_x))
        falloff_y=y*0.0 if sigmasq_y==0.0 else \
            exp(divide(-gaussian_y_coord*gaussian_y_coord,2*sigmasq_y))

    return minimum(maximum(box_x,falloff_x), maximum(box_y,falloff_y))
Example #23
0
def smooth_rectangle(x, y, rec_w, rec_h, gaussian_width_x, gaussian_width_y):
    """
    Rectangle with a solid central region, then Gaussian fall-off at the edges.
    """

    gaussian_x_coord = abs(x) - rec_w / 2.0
    gaussian_y_coord = abs(y) - rec_h / 2.0

    box_x = less(gaussian_x_coord, 0.0)
    box_y = less(gaussian_y_coord, 0.0)
    sigmasq_x = gaussian_width_x * gaussian_width_x
    sigmasq_y = gaussian_width_y * gaussian_width_y

    with float_error_ignore():
        falloff_x=x*0.0 if sigmasq_x==0.0 else \
            exp(divide(-gaussian_x_coord*gaussian_x_coord,2*sigmasq_x))
        falloff_y=y*0.0 if sigmasq_y==0.0 else \
            exp(divide(-gaussian_y_coord*gaussian_y_coord,2*sigmasq_y))

    return minimum(maximum(box_x, falloff_x), maximum(box_y, falloff_y))
Example #24
0
def logMedian(alpha, beta=None):
    """
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: not needed
    @type  beta: float

    @return: median of the original lognormal distribution
    @rtype: float
    """
    return N.exp(alpha)
Example #25
0
def logSigma( alpha, beta ):
    """
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: standarddev of log-transformed distribution
    @type  beta: float

    @return: 'standard deviation' of the original lognormal distribution
    @rtype: float
    """
    return logMean( alpha, beta ) * N.sqrt( N.exp(beta**2) - 1.)
Example #26
0
def gabor(x, y, xsigma, ysigma, frequency, phase):
    """
    Gabor pattern (sine grating multiplied by a circular Gaussian).
    """
    if xsigma==0.0 or ysigma==0.0:
        return x*0.0
    
    with float_error_ignore():
        x_w = divide(x,xsigma)
        y_h = divide(y,ysigma)
        p = exp(-0.5*x_w*x_w + -0.5*y_h*y_h)
    return p * 0.5*cos(2*pi*frequency*y + phase)
Example #27
0
def gabor(x, y, xsigma, ysigma, frequency, phase):
    """
    Gabor pattern (sine grating multiplied by a circular Gaussian).
    """
    if xsigma == 0.0 or ysigma == 0.0:
        return x * 0.0

    with float_error_ignore():
        x_w = divide(x, xsigma)
        y_h = divide(y, ysigma)
        p = exp(-0.5 * x_w * x_w + -0.5 * y_h * y_h)
    return p * 0.5 * cos(2 * pi * frequency * y + phase)
Example #28
0
def gaussian(x, y, xsigma, ysigma):
    """
    Two-dimensional oriented Gaussian pattern (i.e., 2D version of a
    bell curve, like a normal distribution but not necessarily summing
    to 1.0).
    """
    if xsigma==0.0 or ysigma==0.0:
        return x*0.0

    with float_error_ignore():
        x_w = divide(x,xsigma)
        y_h = divide(y,ysigma)
        return exp(-0.5*x_w*x_w + -0.5*y_h*y_h)
Example #29
0
    def P(self,T,m):
        P_j= array( exp( m["HAR_A"]+m["HAR_B"] / T  + m["HAR_C"]*log(T) ) )
        P = []
        T1 = log(T)
        T2 = power(T,2)
##        print m["HAR_D"]
        for j in range(len(m["HAR_A"])):
            P_r = P_j[j]
            i= 1
##            print j,P_r,T2
            while i<=20:
                P_i = m["HAR_A"][j]+m["HAR_B"][j]/ T  + m["HAR_C"][j]*T1 + m["HAR_D"][j]*P_r/T2
##                print P_i
                P_i = exp(P_i)
##                print P_i*0.13332236
                i +=1
                if abs(P_i-P_r)<=1:
                    P.append(P_i)
                    break
                P_r = P_i
                
        return array(P) * self.Factor
Example #30
0
def gaussian(x, y, xsigma, ysigma):
    """
    Two-dimensional oriented Gaussian pattern (i.e., 2D version of a
    bell curve, like a normal distribution but not necessarily summing
    to 1.0).
    """
    if xsigma == 0.0 or ysigma == 0.0:
        return x * 0.0

    with float_error_ignore():
        x_w = divide(x, xsigma)
        y_h = divide(y, ysigma)
        return exp(-0.5 * x_w * x_w + -0.5 * y_h * y_h)
Example #31
0
def log_gaussian(x, y, x_sigma, y_sigma, mu):
    """
    Two-dimensional oriented Log Gaussian pattern (i.e., 2D version of a
    bell curve with an independent, movable peak). Much like a normal 
    distribution, but not necessarily placing the peak above the center,
    and not necessarily summing to 1.0).
    """
    if x_sigma == 0.0 or y_sigma == 0.0:
        return x * 0.0

    with float_error_ignore():
        x_w = divide(log(x) - mu, x_sigma * x_sigma)
        y_h = divide(log(y) - mu, y_sigma * y_sigma)

        return exp(-0.5 * x_w * x_w + -0.5 * y_h * y_h)
Example #32
0
def line(y, thickness, gaussian_width):
    """
    Infinite-length line with a solid central region, then Gaussian fall-off at the edges.
    """
    distance_from_line = abs(y)
    gaussian_y_coord = distance_from_line - thickness/2.0
    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        falloff = x*0.0
    else:
        with float_error_ignore():
            falloff = exp(divide(-gaussian_y_coord*gaussian_y_coord,2*sigmasq))

    return where(gaussian_y_coord<=0, 1.0, falloff)
Example #33
0
 def leftDrag(self, event):
     """
     Event handler for LMB drag event.
     
     @param event: A Qt mouse event.
     @type  event: U{B{QMouseEvent}<http://doc.trolltech.com/4/qmouseevent.html>}
     """
     dScale = 0.025  # This works nicely. Mark 2008-01-29.
     delta = self.prevY - event.y()
     self.prevY = event.y()
     factor = exp(dScale * delta)
     # print "y, py =", event.y(), self.prevY, ", delta =", delta, ", factor=", factor
     self.glpane.rescale_around_point(factor)
     self.glpane.gl_update()
     return
Example #34
0
def log_gaussian(x, y, x_sigma, y_sigma, mu):
    """
    Two-dimensional oriented Log Gaussian pattern (i.e., 2D version of a
    bell curve with an independent, movable peak). Much like a normal
    distribution, but not necessarily placing the peak above the center,
    and not necessarily summing to 1.0).
    """
    if x_sigma==0.0 or y_sigma==0.0:
        return x * 0.0

    with float_error_ignore():
        x_w = divide(log(x)-mu, x_sigma*x_sigma)
        y_h = divide(log(y)-mu, y_sigma*y_sigma)

        return exp(-0.5*x_w*x_w + -0.5*y_h*y_h)
def line(y, thickness, gaussian_width):
    """
    Infinite-length line with a solid central region, then Gaussian fall-off at the edges.
    """
    distance_from_line = abs(y)
    gaussian_y_coord = distance_from_line - thickness/2.0
    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        falloff = y*0.0
    else:
        with float_error_ignore():
            falloff = exp(divide(-gaussian_y_coord*gaussian_y_coord,2*sigmasq))

    return where(gaussian_y_coord<=0, 1.0, falloff)
Example #36
0
def ring(x, y, height, thickness, gaussian_width):
    """
    Circular ring (annulus) with Gaussian fall-off after the solid ring-shaped region.
    """
    radius = height/2.0
    half_thickness = thickness/2.0

    distance_from_origin = sqrt(x**2+y**2)
    distance_outside_outer_disk = distance_from_origin - radius - half_thickness
    distance_inside_inner_disk = radius - half_thickness - distance_from_origin

    ring = 1.0-bitwise_xor(greater_equal(distance_inside_inner_disk,0.0),greater_equal(distance_outside_outer_disk,0.0))

    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        inner_falloff = x*0.0
        outer_falloff = x*0.0
    else:
        with float_error_ignore():
            inner_falloff = exp(divide(-distance_inside_inner_disk*distance_inside_inner_disk, 2.0*sigmasq))
            outer_falloff = exp(divide(-distance_outside_outer_disk*distance_outside_outer_disk, 2.0*sigmasq))

    return maximum(inner_falloff,maximum(outer_falloff,ring))
Example #37
0
 def leftDrag(self, event):
     """
     Event handler for LMB drag event.
     
     @param event: A Qt mouse event.
     @type  event: U{B{QMouseEvent}<http://doc.trolltech.com/4/qmouseevent.html>}
     """
     dScale = .025  # This works nicely. Mark 2008-01-29.
     delta = self.prevY - event.y()
     self.prevY = event.y()
     factor = exp(dScale * delta)
     #print "y, py =", event.y(), self.prevY, ", delta =", delta, ", factor=", factor
     self.glpane.rescale_around_point(factor)
     self.glpane.gl_update()
     return
Example #38
0
    def test_MatrixPlot(self):
        """MatrixPlot test"""
        n = 30

        z = N.zeros((n, n), N.Float)

        for i in range(N.shape(z)[0]):
            for j in range(N.shape(z)[1]):
                z[i, j] = N.exp(-0.01 * ((i - n / 2)**2 + (j - n / 2)**2))

        self.p = MatrixPlot(z, palette='sausage', legend=1)

        if self.local or self.VERBOSITY > 2:
            self.p.show()

        self.assert_(self.p is not None)
Example #39
0
    def von_mises( self, pars, x ):
        """
        Compute a simplified von Mises function.

        Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung
        und ihre Anwendungen in der Statistik und theoretischen Physik", 1931,
        Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional
        Statistics", 1999, J. Wiley, p.36;
        http://en.wikipedia.org/wiki/Von_Mises_distribution
        The two differences are that this function is a continuous probability
        distribution on a semi-circle, while von Mises is on the full circle,
        and that the normalization factor, which is the inverse of the modified
        Bessel function of first kind and 0 degree in the original, is here a fit parameter.
        """
        a, k, t = pars
        return a * exp( k * ( cos( 2 * ( x - t ) ) - 1 ) )
Example #40
0
    def von_mises(self, pars, x):
        """
        Compute a simplified von Mises function.

        Original formulation in Richard von Mises, "Wahrscheinlichkeitsrechnung
        und ihre Anwendungen in der Statistik und theoretischen Physik", 1931,
        Deuticke, Leipzig; see also Mardia, K.V. and Jupp, P.E., " Directional
        Statistics", 1999, J. Wiley, p.36;
        http://en.wikipedia.org/wiki/Von_Mises_distribution
        The two differences are that this function is a continuous probability
        distribution on a semi-circle, while von Mises is on the full circle,
        and that the normalization factor, which is the inverse of the modified
        Bessel function of first kind and 0 degree in the original, is here a fit parameter.
        """
        a, k, t = pars
        return a * exp(k * (cos(2 * (x - t)) - 1))
def disk(x, y, height, gaussian_width):
    """
    Circular disk with Gaussian fall-off after the solid central region.
    """
    disk_radius = height/2.0

    distance_from_origin = sqrt(x**2+y**2)
    distance_outside_disk = distance_from_origin - disk_radius
    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        falloff = x*0.0
    else:
        with float_error_ignore():
            falloff = exp(divide(-distance_outside_disk*distance_outside_disk,
                                  2*sigmasq))

    return where(distance_outside_disk<=0,1.0,falloff)
Example #42
0
def disk(x, y, height, gaussian_width):
    """
    Circular disk with Gaussian fall-off after the solid central region.
    """
    disk_radius = height/2.0

    distance_from_origin = sqrt(x**2+y**2)
    distance_outside_disk = distance_from_origin - disk_radius
    sigmasq = gaussian_width*gaussian_width

    if sigmasq==0.0:
        falloff = x*0.0
    else:
        with float_error_ignore():
            falloff = exp(divide(-distance_outside_disk*distance_outside_disk,
                                  2*sigmasq))

    return where(distance_outside_disk<=0,1.0,falloff)
Example #43
0
def radial(x, y, wide, gaussian_width):
    """
    Radial grating - A sector of a circle with Gaussian fall-off.
    Parameter wide determines in wide of sector in radians.
    """

    angle = absolute(arctan2(y,x))
    half_wide = wide/2

    radius = 1.0 - greater_equal(angle,half_wide)
    distance = angle - half_wide

    sigmasq = gaussian_width*gaussian_width

    with float_error_ignore():
        falloff = exp(divide(-distance*distance, 2.0*sigmasq))

    return maximum(radius,falloff)
Example #44
0
    def T(self,P,m):
        P= P/self.Factor
        T = []
        T_j = array( m["HAR_B"] /( log(P)-m["HAR_A"] )  )
##        print m["HAR_D"]
        for j in range(len(m["HAR_A"])):
            T_r = T_j[j]
            i= 1
            while i<=20:
            
                fP_i = log(P_i) - exp( m["HAR_A"][j]+m["HAR_B"][j] / ( T_r ) + m["HAR_C"][j]*log(T_r) + m["HAR_D"][j]*P/power(T_r,2) ) 
                dP_i = m["HAR_C"][j]/T_r- m["HAR_B"][j]/power(T_r,2) - 2*m["HAR_D"][j]*P/power(T_r,3)
                i +=1
                if abs(fP_i)<=1e-3:
                    T.append(T_r)
                    break
                T = T-fP_i/dPi 
        return T
Example #45
0
    def vector_sum(self, d):
        """
        Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).

        Each bin contributes a vector of length equal to its value, at
        a direction corresponding to the bin number.  Specifically,
        the total bin number range is mapped into a direction range
        [0,2pi].

        For a cyclic distribution, the avgbinnum will be a continuous
        measure analogous to the max_value_bin() of the distribution.
        But this quantity has more precision than max_value_bin()
        because it is computed from the entire distribution instead of
        just the peak bin.  However, it is likely to be useful only
        for uniform or very dense sampling; with sparse, non-uniform
        sampling the estimates will be biased significantly by the
        particular samples chosen.

        The avgbinnum is not meaningful when the magnitude is 0,
        because a zero-length vector has no direction.  To find out
        whether such cases occurred, you can compare the value of
        undefined_vals before and after a series of calls to this
        function.

        """
        # vectors are represented in polar form as complex numbers
        h = d._data
        r = h.values()
        theta = d._bins_to_radians(array(h.keys()))
        v_sum = innerproduct(r, exp(theta * 1j))

        magnitude = abs(v_sum)
        direction = arg(v_sum)

        if v_sum == 0:
            d.undefined_vals += 1

        direction_radians = d._radians_to_bins(direction)

        # wrap the direction because arctan2 returns principal values
        wrapped_direction = wrap(d.axis_bounds[0], d.axis_bounds[1],
                                 direction_radians)

        return (magnitude, wrapped_direction)
Example #46
0
    def vector_sum(self, d ):
        """
        Return the vector sum of the distribution as a tuple (magnitude, avgbinnum).

        Each bin contributes a vector of length equal to its value, at
        a direction corresponding to the bin number.  Specifically,
        the total bin number range is mapped into a direction range
        [0,2pi].
        
        For a cyclic distribution, the avgbinnum will be a continuous
        measure analogous to the max_value_bin() of the distribution.
        But this quantity has more precision than max_value_bin()
        because it is computed from the entire distribution instead of
        just the peak bin.  However, it is likely to be useful only
        for uniform or very dense sampling; with sparse, non-uniform
        sampling the estimates will be biased significantly by the
        particular samples chosen.

        The avgbinnum is not meaningful when the magnitude is 0,
        because a zero-length vector has no direction.  To find out
        whether such cases occurred, you can compare the value of
        undefined_vals before and after a series of calls to this
        function.

        """
        # vectors are represented in polar form as complex numbers
        h   = d._data
        r   = h.values()                                  
        theta = d._bins_to_radians(array( h.keys() ))
        v_sum = innerproduct(r, exp(theta*1j))                  

        magnitude = abs(v_sum)
        direction = arg(v_sum)

        if v_sum == 0:
            d.undefined_vals += 1

        direction_radians = d._radians_to_bins(direction)

        # wrap the direction because arctan2 returns principal values
        wrapped_direction = wrap(d.axis_bounds[0], d.axis_bounds[1], direction_radians)
        
        return (magnitude, wrapped_direction) 
Example #47
0
    def function(self,params):
        """Radial function."""

        aspect_ratio = params['aspect_ratio']
        x = self.pattern_x/aspect_ratio
        y = self.pattern_y
        gaussian_width = params['smoothing']
        
        angle = absolute(arctan2(y,x))
        half_length = params['arc_length']/2

        radius = 1.0 - greater_equal(angle,half_length)
        distance = angle - half_length

        sigmasq = gaussian_width*gaussian_width

        with float_error_ignore():
            falloff = exp(divide(-distance*distance, 2.0*sigmasq))

        return maximum(radius, falloff)
Example #48
0
def spiral(x, y, thickness, gaussian_width, density):
    """
    Archemidean spiral with Gaussian fall-off outside the spiral curve.
    """
    half_thickness = thickness/2.0
    spacing = density*2*pi

    distance_from_origin = sqrt(x**2+y**2)
    distance_from_spiral_middle = fmod(spacing + distance_from_origin - density*arctan2(y,x),spacing)

    distance_from_spiral_middle = minimum(distance_from_spiral_middle,spacing - distance_from_spiral_middle)
    distance_from_spiral = distance_from_spiral_middle - half_thickness

    spiral = 1.0 - greater_equal(distance_from_spiral,0.0)

    sigmasq = gaussian_width*gaussian_width

    with float_error_ignore():
        falloff = exp(divide(-distance_from_spiral*distance_from_spiral, 2.0*sigmasq))

    return maximum(falloff,spiral)
Example #49
0
def logArea(x, alpha, beta):
    """
    Area of the smallest interval of a lognormal distribution that still
    includes x.

    @param x: border value
    @type  x: float
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: standarddev of log-transformed distribution
    @type  beta: float

    @return: probability that x is NOT drawn from the given distribution
    @rtype: float
    """
    r_max = N.exp(alpha - beta**2)

    if x < r_max: x = r_max**2 / x

    upper = (N.log(x) - alpha) / beta 

    return 0.5 * (erf(upper / N.sqrt(2)) - erf(-(upper + 2*beta) / N.sqrt(2)))
Example #50
0
def logArea(x, alpha, beta):
    """
    Area of the smallest interval of a lognormal distribution that still
    includes x.

    @param x: border value
    @type  x: float
    @param alpha: mean of log-transformed distribution
    @type  alpha: float
    @param beta: standarddev of log-transformed distribution
    @type  beta: float

    @return: probability that x is NOT drawn from the given distribution
    @rtype: float
    """
    r_max = N.exp(alpha - beta**2)

    if x < r_max: x = r_max**2 / x

    upper = (N.log(x) - alpha) / beta

    return 0.5 * (erf(upper / N.sqrt(2)) -
                  erf(-(upper + 2 * beta) / N.sqrt(2)))
Example #51
0
    def test_preference(self):
        
        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(self.fm1.weighted_average()[i,j], 0.5)
                self.assertAlmostEqual(self.fm2.weighted_average()[i,j], 0.5)


        # To test the update function     
        self.fm1.update(self.a1,0.7)
        self.fm2.update(self.a1,0.7)

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(self.fm1.weighted_average()[i,j], 0.6)
                vect_sum = wrap(0,1,arg(exp(0.7*2*pi*1j)+exp(0.5*2*pi*1j))/(2*pi)) 
                self.assertAlmostEqual(self.fm2.weighted_average()[i,j],vect_sum) 
                                      
                                      

        
        # To test the keep_peak=True 
        self.fm1.update(self.a1,0.7)
        self.fm2.update(self.a1,0.7)

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(self.fm1.weighted_average()[i,j], 0.6)
                vect_sum =wrap(0,1,arg(exp(0.7*2*pi*1j)+exp(0.5*2*pi*1j))/(2*pi))
                self.assertAlmostEqual(self.fm2.weighted_average()[i,j],vect_sum)
                                      
        self.fm1.update(self.a2,0.7)
        self.fm2.update(self.a2,0.7)

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(self.fm1.weighted_average()[i,j], 0.65)
                vect_sum =wrap(0,1,arg(3*exp(0.7*2*pi*1j)+exp(0.5*2*pi*1j))/(2*pi))
                self.assertAlmostEqual(self.fm2.weighted_average()[i,j],vect_sum)

        # to even test more....
        
        self.fm1.update(self.a3,0.9)
        self.fm2.update(self.a3,0.9)
        
        for i in range(3):
            self.assertAlmostEqual(self.fm1.weighted_average()[i,0], 0.65)
            self.assertAlmostEqual(self.fm1.weighted_average()[i,1], 0.7)
            vect_sum = wrap(0,1,arg(3*exp(0.7*2*pi*1j)+exp(0.5*2*pi*1j))/(2*pi))
            self.assertAlmostEqual(self.fm2.weighted_average()[i,0],vect_sum)
            vect_sum = wrap(0,1,arg(3*exp(0.7*2*pi*1j)+exp(0.5*2*pi*1j)+exp(0.9*2*pi*1j))/(2*pi))
            self.assertAlmostEqual(self.fm2.weighted_average()[i,1],vect_sum)
Example #52
0
    def test_selectivity(self):

        for i in range(3):
            for j in range(2):
                # when only one bin the selectivity is 1 (from C code)
                self.assertAlmostEqual(selectivity(self.fm1)[i, j], 1.0)
                self.assertAlmostEqual(selectivity(self.fm2)[i, j], 1.0)

        # To test the update function
        self.fm1.update(self.a1, 0.7)
        self.fm2.update(self.a1, 0.7)

        for i in range(3):
            for j in range(2):
                proportion = 1.0 / 2.0
                offset = 1.0 / 2.0
                relative_selectivity = (proportion - offset) / (
                    1.0 - offset)  ## gives 0 ..?
                self.assertAlmostEqual(
                    selectivity(self.fm1)[i, j], relative_selectivity)
                vect_sum = abs(
                    exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j)) / 2.0
                self.assertAlmostEqual(selectivity(self.fm2)[i, j], vect_sum)

        # To test the keep_peak=True
        self.fm1.update(self.a1, 0.7)
        self.fm2.update(self.a1, 0.7)

        for i in range(3):
            for j in range(2):
                proportion = 1.0 / 2.0
                offset = 1.0 / 2.0
                relative_selectivity = (proportion - offset) / (1.0 - offset)
                self.assertAlmostEqual(
                    selectivity(self.fm1)[i, j], relative_selectivity)
                vect_sum = abs(
                    exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j)) / 2.0
                self.assertAlmostEqual(selectivity(self.fm2)[i, j], vect_sum)

        self.fm1.update(self.a2, 0.7)
        self.fm2.update(self.a2, 0.7)

        for i in range(3):
            for j in range(2):
                proportion = 3.0 / 4.0
                offset = 1.0 / 2.0
                relative_selectivity = (proportion - offset) / (1.0 - offset)
                #self.assertAlmostEqual( selectivity( self.fm1 )[i,j],relative_selectivity)
                vect_sum = abs(3 * exp(0.7 * 2 * pi * 1j) +
                               exp(0.5 * 2 * pi * 1j)) / 4.0
                self.assertAlmostEqual(selectivity(self.fm2)[i, j], vect_sum)

        # to even test more....

        self.fm1.update(self.a3, 0.9)
        self.fm2.update(self.a3, 0.9)

        for i in range(3):
            proportion = 3.0 / 4.0
            offset = 1.0 / 3.0  ### Carefull, do not create bins when it is 0
            ### Check with Bednar what is num_bins in the original C-file and see what he wants
            ### now for the selectivity ....
            relative_selectivity = (proportion - offset) / (1.0 - offset)
            self.assertAlmostEqual(
                selectivity(self.fm1)[i, 0], relative_selectivity)
            proportion = 3.0 / 5.0
            offset = 1.0 / 3.0
            relative_selectivity = (proportion - offset) / (1.0 - offset)
            ### to fix this test as well
            #self.assertAlmostEqual( selectivity( self.fm1 )[i,1], relative_selectivity)

            vect_sum = abs(3 * exp(0.7 * 2 * pi * 1j) +
                           exp(0.5 * 2 * pi * 1j)) / 4.0
            self.assertAlmostEqual(selectivity(self.fm2)[i, 0], vect_sum)
            vect_sum = abs(3 * exp(0.7 * 2 * pi * 1j) +
                           exp(0.5 * 2 * pi * 1j) +
                           exp(0.9 * 2 * pi * 1j)) / 5.0
            self.assertAlmostEqual(selectivity(self.fm2)[i, 1], vect_sum)
Example #53
0
    def test_preference(self):

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(weighted_average(self.fm1)[i, j], 0.5)
                self.assertAlmostEqual(weighted_average(self.fm2)[i, j], 0.5)

        # To test the update function
        self.fm1.update(self.a1, 0.7)
        self.fm2.update(self.a1, 0.7)

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(weighted_average(self.fm1)[i, j], 0.6)
                vect_sum = wrap(
                    0, 1,
                    arg(exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j)) /
                    (2 * pi))
                self.assertAlmostEqual(
                    weighted_average(self.fm2)[i, j], vect_sum)

        # To test the keep_peak=True
        self.fm1.update(self.a1, 0.7)
        self.fm2.update(self.a1, 0.7)

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(weighted_average(self.fm1)[i, j], 0.6)
                vect_sum = wrap(
                    0, 1,
                    arg(exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j)) /
                    (2 * pi))
                self.assertAlmostEqual(
                    weighted_average(self.fm2)[i, j], vect_sum)

        self.fm1.update(self.a2, 0.7)
        self.fm2.update(self.a2, 0.7)

        for i in range(3):
            for j in range(2):
                self.assertAlmostEqual(weighted_average(self.fm1)[i, j], 0.65)
                vect_sum = wrap(
                    0, 1,
                    arg(3 * exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j)) /
                    (2 * pi))
                self.assertAlmostEqual(
                    weighted_average(self.fm2)[i, j], vect_sum)

        # to even test more....

        self.fm1.update(self.a3, 0.9)
        self.fm2.update(self.a3, 0.9)

        for i in range(3):
            self.assertAlmostEqual(weighted_average(self.fm1)[i, 0], 0.65)
            self.assertAlmostEqual(weighted_average(self.fm1)[i, 1], 0.7)
            vect_sum = wrap(
                0, 1,
                arg(3 * exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j)) /
                (2 * pi))
            self.assertAlmostEqual(weighted_average(self.fm2)[i, 0], vect_sum)
            vect_sum = wrap(
                0, 1,
                arg(3 * exp(0.7 * 2 * pi * 1j) + exp(0.5 * 2 * pi * 1j) +
                    exp(0.9 * 2 * pi * 1j)) / (2 * pi))
            self.assertAlmostEqual(weighted_average(self.fm2)[i, 1], vect_sum)
Example #54
0
def rand_log_normal(alpha, beta, shape):
    return N.exp(R.normal(alpha, beta, shape))
Example #55
0
def ln(r, alpha, beta):
    return N.exp(-0.5/beta**2 * (N.log(r) - alpha)**2 \
                 - 0.5*N.log(2*N.pi)-N.log(beta*r))
Example #56
0
 def P(self,T,m):
     logP = m["ANT_A"]-(m["ANT_B"]/ ( T + m["ANT_C"] ))
     for i in range(len(logP)):
         if logP[i]<-36:
             logP[i]= -18.420680743952367
     return array( exp( logP )*self.Factor)
Example #57
0
 def FugaP(self, Z, A, B):
     """ Fugacity Coefficient of Pure Substances"""
     LogFug = Z - 1 - log(Z - B) - A / B * log(1 + B / Z)
     Fug = exp(LogFug)
     return Fug
Example #58
0
    def FugaM(self, Z, A_i, B_i, A, B):

        LogFug = B_i / B * (Z - 1) - log(
            Z - B) + A / B * (B_i / B - 2 * A_i / A) * log(1 + B / Z)
        Fug = exp(LogFug)
        return Fug