Example #1
0
	def __init__(self, obj, delayInterval): 
		self.obj=obj
		self.delayInterval=delayInterval
		self.start=delayInterval[0]
		self.range=delayInterval[1]-delayInterval[0]
		
		# Seed our own random generator, remember its state and restore original state
		state=random.get_state()
		random.seed()
		self.state=random.get_state()
		random.set_state(state)
Example #2
0
def create_dataset(cifar, lld):
    """
    Create full dataset, shuffling while preserving labels
    :param cifar: the cifar sub-dataset
    :param lld: the lld sub-dataset
    :return: the training dataset images and labels
    """
    print(CREATING_DATASET)
    dataset_size = len(cifar) + len(lld)
    step = 100 / dataset_size
    images = zeros(shape=[dataset_size, img_size, img_size, num_channels],
                   dtype=float32)
    i, j = 0, 0
    for i, image in enumerate(cifar):
        images[i] = image
        stdout.write('\r{} {:2.2f}%'.format(loading_message('CIFAR'),
                                            step * (i + 1)))
    for j, image in enumerate(lld):
        images[i + j] = image
        stdout.write('\r{} {:2.2f}%'.format(loading_message('LLD'),
                                            step * (i + j + 1)))

    labels = zeros(shape=[dataset_size], dtype=int)
    labels[len(cifar):dataset_size] = ones(shape=[len(lld)], dtype=int)

    del cifar, lld
    print(CREATION_SUCCESFULL)
    rng_state = get_state()
    shuffle(images)
    set_state(rng_state)
    shuffle(labels)
    return images, labels
Example #3
0
def init_theta_la( theta, src_embsize, trg_embsize, src_word_vectors, trg_word_vectors, _seed=None ):
    if _seed != None:
        ori_state = get_state()
        seed(_seed)
    
    src_offset = 4 * src_embsize * src_embsize + 3 * src_embsize + src_embsize * src_word_vectors._vectors.shape[1]
    src_theta = theta[0:src_offset] 
    trg_theta = theta[src_offset:]

    parameters = []

    # Source side 
    parameters.append( src_theta )
    # Wla n*n
    parameters.append( init_W( src_embsize, src_embsize ) )
    # bla n*1
    parameters.append( zeros( src_embsize ) )

    # Target side 
    parameters.append( trg_theta )
    # Wla n*n
    parameters.append( init_W( trg_embsize, trg_embsize ) )
    # bla n*1
    parameters.append( zeros( trg_embsize ) )
    
    if _seed != None:  
        set_state(ori_state)
  
    return concatenate(parameters) 
Example #4
0
def _reseed(config, offset=0):
    global entrypoint_reseeds
    seed = config.getoption("randomly_seed") + offset
    if seed not in random_states:
        random.seed(seed)
        random_states[seed] = random.getstate()
    else:
        random.setstate(random_states[seed])

    if have_factory_boy:
        factory_set_random_state(random_states[seed])

    if have_faker:
        faker_random.setstate(random_states[seed])

    if have_numpy:
        if seed not in np_random_states:
            np_random.seed(seed)
            np_random_states[seed] = np_random.get_state()
        else:
            np_random.set_state(np_random_states[seed])

    if entrypoint_reseeds is None:
        entrypoint_reseeds = [
            e.load() for e in entry_points().get("pytest_randomly.random_seeder", [])
        ]
    for reseed in entrypoint_reseeds:
        reseed(seed)
Example #5
0
def init_theta(embsize, _seed=None):
  if _seed != None:
    ori_state = get_state()
    seed(_seed)
    
  parameters = []
  
  # Wi1 
  parameters.append(init_W(embsize, embsize))
  # Wi2
  parameters.append(init_W(embsize, embsize))
  # bi
  parameters.append(zeros(embsize))
  
  # Wo1 
  parameters.append(init_W(embsize, embsize))
  # Wo2
  parameters.append(init_W(embsize, embsize))
  # bo1
  parameters.append(zeros(embsize))
  # bo2
  parameters.append(zeros(embsize))

  if _seed != None:  
    set_state(ori_state)
  
  return concatenate(parameters)   
Example #6
0
def init_theta(embsize, num_of_domains=1, _seed=None):
    if _seed != None:
        ori_state = get_state()
        seed(_seed)

    parameters = []

    # Wi1
    parameters.append(init_W(embsize, embsize))
    # Wi2
    parameters.append(init_W(embsize, embsize))
    # bi
    parameters.append(zeros(embsize))

    # Wo1
    parameters.append(init_W(embsize, embsize))
    # Wo2
    parameters.append(init_W(embsize, embsize))
    # bo1
    parameters.append(zeros(embsize))
    # bo2
    parameters.append(zeros(embsize))

    for i in range(0, num_of_domains):
        parameters.append(init_W(1, embsize * 2))
        parameters.append(init_W(1, embsize * 2))
        parameters.append(zeros(1))
        parameters.append(zeros(1))

    if _seed != None:
        set_state(ori_state)

    return concatenate(parameters)
Example #7
0
    def _real_init(self, dims, values, durations):
        self.randomstate = npr.get_state()

        # Identify constraint violations
        # Note that we'll treat NaNs and Infs as these values as well
        # as an optional user defined value
        goodvals = np.nonzero(
            np.logical_and(values != self.bad_value, np.isfinite(values)))[0]

        # Input dimensionality.
        self.D = dims

        # Initial length scales.
        self.ls = np.ones(self.D)
        self.constraint_ls = np.ones(self.D)

        # Initial amplitude.
        self.amp2 = np.std(values[goodvals]) + 1e-4
        self.constraint_amp2 = 1.0

        # Initial observation noise.
        self.noise = 1e-3
        self.constraint_noise = 1e-3
        self.constraint_gain = 1

        # Initial mean.
        self.mean = np.mean(values[goodvals])
        self.constraint_mean = 0.5
Example #8
0
def save_rng(fname='numpy_rng_state.pkl'):
    """
    Save the state of NumPy's RNG to a file in the CWD.  Backup the previous
    two saved states if present.

    If the RNG state file exists (from a previous save), rename the previous
    one with a '.1' suffix.  If a '.1' file exists, rename it with a '.2'
    suffix.

    After use, to reproduce the previous run, restore the RNG using the
    state file with a '.1' suffix (the state used for the last run).
    """
    state = random.get_state()
    if state[0] == MT_id:
        id, state = state[0], (state[1], state[2])  # (ID, (key, pos)) for MT
    else:
        raise RuntimeError('numpy.random using unrecognized RNG type!')
    if path.exists(fname):
        fname1 = fname + '.1'
        if path.exists(fname1):
            fname2 = fname + '.2'
            os.rename(fname1, fname2)
        os.rename(fname, fname1)
    ofile = open(fname, 'wb')
    pickle.dump((id, state), ofile)
    ofile.close()
Example #9
0
def check_grad(fun, test_x, error_tol=1e-3, delta=1e-5, verbose=False, fun_args=[]):
    if verbose:
        sys.stderr.write('Checking gradients...\n')
        
    state_before_checking = npr.get_state()
    fixed_seed = 5      # arbitrary
    
    npr.seed(fixed_seed)
    analytical_grad = fun(test_x, *fun_args)[1]
    D = test_x.shape[1] if test_x.ndim > 1 else test_x.size
    grad_check = np.zeros(analytical_grad.shape) if analytical_grad.size > 1 else np.zeros(1)
    for i in range(D):
        unit_vector = np.zeros(D)
        unit_vector[i] = delta
        npr.seed(fixed_seed)
        forward_val = fun(test_x + unit_vector, *fun_args)[0]
        npr.seed(fixed_seed)
        backward_val = fun(test_x - unit_vector, *fun_args)[0]
        grad_check_i = (forward_val - backward_val)/(2*delta)
        if test_x.ndim > 1:
            grad_check[:,i] = grad_check_i
        else:
            grad_check[i] = grad_check_i
    grad_diff = grad_check - analytical_grad
    err = np.sqrt(np.sum(grad_diff**2))

    if verbose:        
        sys.stderr.write('Analytical grad: %s\n' % str(analytical_grad))
        sys.stderr.write('Estimated grad:  %s\n' % str(grad_check))
        sys.stderr.write('L2-norm of gradient error = %g\n' % err)

    npr.set_state(state_before_checking)

    return err < error_tol
Example #10
0
def permute_target_and_match_target_and_features(target, features,
                                                 min_n_sample, match_function,
                                                 n_permutation, random_seed):

    if n_permutation < 1:

        raise ValueError(
            'Not computing P-Value and FDR because n_permutation < 1.')

    print('Computing p-value and FDR with {} permutations ...'.format(
        n_permutation))

    feature_x_permutation = full((features.shape[0], n_permutation), nan)

    permuted_target = target.copy()

    seed(random_seed)

    for i in range(n_permutation):

        shuffle(permuted_target)

        random_state = get_state()

        feature_x_permutation[:, i] = match_target_and_features(
            permuted_target, features, min_n_sample, match_function)

        set_state(random_state)

    return feature_x_permutation
Example #11
0
def init_theta(embsize, _seed=None):
    if _seed != None:
        ori_state = get_state()
        seed(_seed)

    parameters = []

    # Wi1
    parameters.append(init_W(embsize, embsize))
    # Wi2
    parameters.append(init_W(embsize, embsize))
    # bi
    parameters.append(zeros(embsize))

    # Wo1
    parameters.append(init_W(embsize, embsize))
    # Wo2
    parameters.append(init_W(embsize, embsize))
    # bo1
    parameters.append(zeros(embsize))
    # bo2
    parameters.append(zeros(embsize))

    if _seed != None:
        set_state(ori_state)

    return concatenate(parameters)
Example #12
0
def init_theta( embsize, word_vectors, _seed = None ):
    if _seed != None:
        ori_state = get_state()
        seed(_seed)
    
    parameters = []
    
    # Wi1 n*n
    parameters.append(init_W(embsize, embsize))
    # Wi2 n*n
    parameters.append(init_W(embsize, embsize))
    # bi n*1
    parameters.append(zeros(embsize))
  
    # Wo1 n*n
    parameters.append(init_W(embsize, embsize))
    # Wo2 n*n
    parameters.append(init_W(embsize, embsize))
    # bo1 n*1
    parameters.append(zeros(embsize))
    # bo2 n*1
    parameters.append(zeros(embsize))

    # L
    parameters.append( word_vectors._vectors.reshape( embsize * len( word_vectors ) ) )

    if _seed != None:  
        set_state(ori_state)
  
    return concatenate(parameters)   
Example #13
0
def init_theta_la(theta, source_embsize, target_embsize, _seed=None):
    if _seed != None:
        ori_state = get_state()
        seed(_seed)

    source_offset = 4 * source_embsize * source_embsize + 3 * source_embsize
    source_theta = theta[0:source_offset]
    target_theta = theta[source_offset:]

    parameters = []

    # Source side
    parameters.append(source_theta)
    # Wla n*n
    parameters.append(init_W(source_embsize, source_embsize))
    # bla n*1
    parameters.append(zeros(source_embsize))

    # Target side
    parameters.append(target_theta)
    # Wla n*n
    parameters.append(init_W(target_embsize, target_embsize))
    # bla n*1
    parameters.append(zeros(target_embsize))

    if _seed != None:
        set_state(ori_state)

    return concatenate(parameters)
Example #14
0
    def _real_init(self, dims, values, hyper_parameters_provider):

        self.randomstate = npr.get_state()
        state = hyper_parameters_provider.get_state()
        if state is not None:

            self.D = state['dims']
            self.ls = state['ls']
            self.amp2 = state['amp2']
            self.noise = state['noise']
            self.mean = state['mean']
            self.hyper_samples = state['hyper_samples']
            self.needs_burnin = False
        else:

            # Input dimensionality.
            self.D = dims

            # Initial length scales.
            self.ls = np.ones(self.D)

            # Initial amplitude.
            self.amp2 = np.std(values) + 1e-4

            # Initial observation noise.
            self.noise = 1e-3

            # Initial mean.
            self.mean = np.mean(values)

            # Save hyperparameter samples
            self.hyper_samples.append(
                (self.mean, self.noise, self.amp2, self.ls))
Example #15
0
def test_sigma_clip():
    from numpy.random import randn,seed,get_state,set_state
    
    #need to seed the numpy RNG to make sure we don't get some amazingly flukey
    #random number that breaks one of the tests
    
    randstate = get_state()
    try:
        seed(12345)  # Amazing, I've got the same combination on my luggage!
        
        randvar = randn(10000)

        data, mask = misc.sigma_clip(randvar, 1, 2)
        maskedarr = misc.sigma_clip(randvar, 1, 2, maout=True)

        assert sum(mask) > 0
        assert data.size < randvar.size
        assert np.all(mask == ~maskedarr.mask)

        #this is actually a silly thing to do, because it uses the standard
        #deviation as the variance, but it tests to make sure these arguments
        #are actually doing something
        data2, mask2 = misc.sigma_clip(randvar, 1, 2, varfunc=np.std)
        assert not np.all(data == data2)
        assert not np.all(mask == mask2)

        data3, mask3 = misc.sigma_clip(randvar, 1, 2, cenfunc=np.mean)
        assert not np.all(data == data3)
        assert not np.all(mask == mask3)

        #now just make sure the iters=None method works at all.
        maskedarr = misc.sigma_clip(randvar, 3, None, maout=True)
    finally:
        set_state(randstate)
def _permute_target_and_match_target_and_data(
    target,
    data,
    random_seed,
    n_permutation,
    match_function,
    n_required_for_match_function,
    raise_for_n_less_than_required,
):

    print("Computing p-value and FDR with {} permutation ...".format(n_permutation))

    seed(random_seed)

    index_x_permutation = full((data.shape[0], n_permutation), nan)

    permuted_target = target.copy()

    for i in range(n_permutation):

        shuffle(permuted_target)

        random_state = get_state()

        index_x_permutation[:, i] = _match_target_and_data(
            permuted_target,
            data,
            match_function,
            n_required_for_match_function,
            raise_for_n_less_than_required,
        )

        set_state(random_state)

    return index_x_permutation
Example #17
0
    def _real_init(self, dims, values):

        self.randomstate = npr.get_state()
        if os.path.exists(self.state_pkl):
            fh    = open(self.state_pkl, 'r')
            state = cPickle.load(fh)
            fh.close()

            self.D             = state['dims']
            self.ls            = state['ls']
            self.amp2          = state['amp2']
            self.noise         = state['noise']
            self.mean          = state['mean']
            self.hyper_samples = state['hyper_samples']
            self.needs_burnin  = False
        else:

            # Input dimensionality.
            self.D = dims

            # Initial length scales.
            self.ls = np.ones(self.D)

            # Initial amplitude.
            self.amp2 = np.std(values)+1e-4

            # Initial observation noise.
            self.noise = 1e-3

            # Initial mean.
            self.mean = np.mean(values)

            # Save hyperparameter samples
            self.hyper_samples.append((self.mean, self.noise, self.amp2,
                                       self.ls))
Example #18
0
File: load.py Project: lpigou/cha17
    def sample_ids(self, set_, size, offset):
        if set_ == TRAIN:
            # DEBUG
            # return [self.ids[set][49], self.ids[set][24]]* (size/2)
            # return [self.ids[set][49]]*size

            # return self.rng.choice(self.ids[set_], size=size, replace=False)

            # print ids

            if self.balance:
                classes = npr.choice(range(249), size=size, replace=False)
                ids = [npr.choice(self.idsperclass[set_][c]) for c in classes]
            else:
                offset = offset % len(self.ids[set_])
                assert offset + size <= len(self.ids[set_])
                ids = self.ids[set_][offset:offset + size]

            return ids
        else:

            state = npr.get_state()
            npr.seed(168465 + offset)

            ids = npr.choice(self.ids[set_], size=size, replace=False)
            # classes = npr.choice(range(249), size=size, replace=False)
            # ids = [npr.choice(self.idsperclass[set_][c]) for c in classes]
            # print ids

            npr.set_state(state)
            return ids
Example #19
0
	def __call__(self, *args): 
		# Switch to our own random generator
		state=random.get_state()
		random.set_state(self.state)
		
		# Generate delay
		s=self.start+self.range*random.rand(1)[0]
		
		# Remember our state and switch back random generator
		self.state=random.get_state()
		random.set_state(state)
		
		# Sleep
		sleep(s)
		
		# Evaluate
		return self.obj(*args)
Example #20
0
def shuffle_sets(ins, outs, times):

    state = nr.get_state()
    for i in range(0, times):
        nr.shuffle(ins)
    nr.set_state(state)
    for i in range(0, times):
        nr.shuffle(outs)
def randomListSelectionSeed(list, seed):
    state = random.get_state()
    random.seed(seed)
    try:
        seeded_selection = randomListSelection(list)
        return seeded_selection
    finally:
        random.set_state(state)
Example #22
0
def fixed_seed(seed):
    state = rng.get_state()
    np.random.seed(seed)

    try:
        yield
    finally:
        np.random.set_state(state)
def randomIntList(start, end, length, seed):
    state = random.get_state()
    random.seed(seed)
    try:
        int_list = random.randint(start, end, length)
        return int_list
    finally:
        random.set_state(state)
def randomDecList (start, end, length, seed):
    state = random.get_state()
    random.seed(seed)
    try:
        dec_list = random.uniform(start, end, length)
        return dec_list
    finally:
        random.set_state(state)
def randomAmountSelectionSeed (list, num_values, seed):
    state = random.get_state()
    random.seed(seed)
    try:
        selection = randomAmountSelection(list, num_values)
        return selection
    finally:
        random.set_state(state)
Example #26
0
 def __init__(self, trace, scaffold, pnodes):
   self.trace = trace
   self.scaffold = scaffold
   # Pass and store the pnodes because their order matters, and the
   # scaffold has them as a set
   self.pnodes = pnodes
   self.pyr_state = random.getstate()
   self.numpyr_state = npr.get_state()
def local_seed(seed):
    state = random.get_state()

    try:
        random.seed(seed)
        yield
    finally:
        random.set_state(state)
Example #28
0
 def generate( self, *args, **kwargs ):
     if kwargs.has_key('seed'):  R.set_state(kwargs['seed'])
     kwargs = kb.format_kwargs(self.generator,kwargs)
     if not kwargs.has_key('N_timebins'):
         raise NameError('stimulus generator requires an N_timebins argument!')
     self.N_timebin_list += [kwargs['N_timebins']]
     self.seed_list      += [R.get_state()]
     return self.generator( *args, **kwargs )
Example #29
0
def randomIntSeed(start, end, seed):
    state = random.get_state()
    random.seed(seed)
    try:
        randIntSeeded = randomInt(start, end)
        return randIntSeeded
    finally:
        random.set_state(state)
Example #30
0
 def random_state_numpy(self):
     # numpy uses its own random state implementation.
     if not have_numpy:
         raise RuntimeError('numpy not installed')
     if not hasattr(self, '_random_state_numpy'):
         np_random.seed(self.options.seed)
         self._random_state_numpy = np_random.get_state()
     return self._random_state_numpy
Example #31
0
def skip_random_states(random_seed, n_skips, skipper='', for_skipper=None):
    """

    :param random_seed: int;
    :param skipper: str;
    :param for_skipper: object;
    :return: list; list of arrays;
    """

    seed(random_seed)
    r = get_state()

    for i in range(n_skips):
        exec(skipper)
        r = get_state()

    return r
Example #32
0
 def test_weighted_level_generator_with_cum_sum(self):
     for n in xrange(1000):
         state = random.random_integers(1, 10, 10)
         cum_sum = np.cumsum(state)
         rand_state = random.get_state()
         pos = generator.weighted_level_generator(state)
         random.set_state(rand_state)
         cs_pos = generator.weighted_level_generator(state, cum_sum)
         self.assertEqual(pos, cs_pos)
 def test_weighted_level_generator_with_cum_sum(self):
     for n in xrange(1000):
         state = random.random_integers(1, 10, 10)
         cum_sum = np.cumsum(state)
         rand_state = random.get_state()
         pos = generator.weighted_level_generator(state)
         random.set_state(rand_state)
         cs_pos = generator.weighted_level_generator(state, cum_sum)
         self.assertEqual(pos, cs_pos)
Example #34
0
 def __init__(self, p=0.5, seed=None):
     self.seed = seed
     self.p = p
     self._state = None  # 1 for flip, 0 for no flip
     self.countdown = 0
     if seed:
         random.seed(seed)
         self._random_state = random.get_state()
     else:
         self._random_state = None
Example #35
0
def push_seed(seed=None): # pragma no cover
    """
    Set a temporary seed to the numpy random number generator, restoring it
    at the end of the context.  If seed is None, then get a seed from
    /dev/urandom (or the windows analogue).
    """
    from numpy.random import get_state, set_state, seed as set_seed
    state = get_state()
    set_seed(seed)
    yield
    set_state(state)
Example #36
0
def push_seed(seed=None): # pragma no cover
    """
    Set a temporary seed to the numpy random number generator, restoring it
    at the end of the context.  If seed is None, then get a seed from
    /dev/urandom (or the windows analogue).
    """
    from numpy.random import get_state, set_state, seed as set_seed
    state = get_state()
    set_seed(seed)
    yield
    set_state(state)
Example #37
0
 def _update_get_state(self):
     """ Updates the state with a new random flip every second read """
     if self.countdown == 0:
         self.countdown = 1
         if self.seed:
             random.set_state(self._random_state)
         self._state = int(random.random() < self.p)
         if self.seed:
             self._random_state = random.get_state()
     else:
         self.countdown -= 1
     return self._state
Example #38
0
def main():
    rstate = random.get_state()
    reset_random()
    
    print ("Running tests 1 and 2 ...")
    test_1and2(trajectories)
    
    print ("Running test 3 ...")
    test_3(trajectories)
    
    print_timer()
    random.set_state(rstate)
def main():
    rstate = random.get_state()
    reset_random()

    print("Running tests 1 and 2 ...")
    test_1and2(trajectories)

    print("Running test 3 ...")
    test_3(trajectories)

    print_timer()
    random.set_state(rstate)
Example #40
0
 def subset_pps5(self, nsamp):
     """
     Return a sample of nsamp distinct items from the population, sampled 
     without replacement with probability proportional to size (PPS)
     according to Sampford's sampling scheme.
     
     5-table lookup samplers are used within Sampford's algorithm to
     accelerate the sampling for large populations.
     """
     # Copy the whole population if nsamp = npopn.
     if nsamp == self.npopn:
         return [item for item in self.items]
     set_rng_state(*random.get_state())
     if self.equiprob:
         pool = arange(self.npopn)
         indices = equalprob(nsamp, pool)
     else:
         # This part of setup has to be done before any sampling.
         if not self.did_init:
             print 'Initing ppssampler...'
             self.sampler = _ppssampler(self.weights)
             self.did_init = True
         # This part has to be done before any sampling w/o replacement.
         if not self.did_Sampford_init:
             print 'Initing wts...'
             self.sort_indices, self.sort_wts, self.tot_wt = \
                 self.sampler.prepwts(self.weights)
             self.max_wt = self.sort_wts[0]/self.tot_wt  # Max wt, normed
             self.nsamp = 0
             self.did_Sampford_init = True
         # This part has to be done when sample size changes.
         if self.nsamp != nsamp:
             print 'Initing ratios...'
             if nsamp > self.npopn:
                 raise ValueError, 'nsamp larger than population size!'
             if nsamp*self.max_wt > 1:
                 raise ValueError, 'Sample size too large for PPS sampling!'
             self.sampler.prepratios(nsamp, self.sort_wts, self.tot_wt)
             self.sampler.prepratiotables()
             self.did_Sampford_tables = True
             self.nsamp = nsamp
         # This may happen if subset_pps is called before subset_pps5.
         if not self.did_Sampford_tables:
             print 'Initing ratio tables...'
             self.sampler.prepratiotables()
             self.did_Sampford_tables = True
         self.ntry, indices = self.sampler.samplenr5()
         # Note the 5-table version returns unsorted indices.
         # indices = [self.sort_indices[i] for i in sindices]
     result = [self.items[i] for i in indices]
     random.set_state(get_rng_state())
     return result
Example #41
0
 def subset_pps5(self, nsamp):
     """
     Return a sample of nsamp distinct items from the population, sampled 
     without replacement with probability proportional to size (PPS)
     according to Sampford's sampling scheme.
     
     5-table lookup samplers are used within Sampford's algorithm to
     accelerate the sampling for large populations.
     """
     # Copy the whole population if nsamp = npopn.
     if nsamp == self.npopn:
         return [item for item in self.items]
     set_rng_state(*random.get_state())
     if self.equiprob:
         pool = arange(self.npopn)
         indices = equalprob(nsamp, pool)
     else:
         # This part of setup has to be done before any sampling.
         if not self.did_init:
             print('Initing ppssampler...')
             self.sampler = _ppssampler(self.weights)
             self.did_init = True
         # This part has to be done before any sampling w/o replacement.
         if not self.did_Sampford_init:
             print('Initing wts...')
             self.sort_indices, self.sort_wts, self.tot_wt = \
                 self.sampler.prepwts(self.weights)
             self.max_wt = self.sort_wts[0] / self.tot_wt  # Max wt, normed
             self.nsamp = 0
             self.did_Sampford_init = True
         # This part has to be done when sample size changes.
         if self.nsamp != nsamp:
             print('Initing ratios...')
             if nsamp > self.npopn:
                 raise ValueError('nsamp larger than population size!')
             if nsamp * self.max_wt > 1:
                 raise ValueError('Sample size too large for PPS sampling!')
             self.sampler.prepratios(nsamp, self.sort_wts, self.tot_wt)
             self.sampler.prepratiotables()
             self.did_Sampford_tables = True
             self.nsamp = nsamp
         # This may happen if subset_pps is called before subset_pps5.
         if not self.did_Sampford_tables:
             print('Initing ratio tables...')
             self.sampler.prepratiotables()
             self.did_Sampford_tables = True
         self.ntry, indices = self.sampler.samplenr5()
         # Note the 5-table version returns unsorted indices.
         # indices = [self.sort_indices[i] for i in sindices]
     result = [self.items[i] for i in indices]
     random.set_state(get_rng_state())
     return result
Example #42
0
    def test_numpy_rng_preservation(self):
        """Tests whether caching is rng-sensible"""
        @caching.cache_results(cache_path=CACHE_PATH)
        def _any_cached_function(arg, kwarg=None):
            return arg, kwarg, nprng.rand()

        arg = 1
        nprng.seed(0)
        a1, k1, r1 = _any_cached_function(arg)
        state1 = nprng.get_state()
        a2, k2, r2 = _any_cached_function(arg)
        state2 = nprng.get_state()
        self.assertEqual(a1, a2, "Return arg changed.")
        self.assertEqual(k1, k2, "Returned kwarg changed.")
        self.assertNotEqual(r1, r2, "Returned the same random.")

        nprng.seed(0)
        rep_a1, rep_k1, rep_r1 = _any_cached_function(arg)
        rep_state1 = nprng.get_state()
        rep_a2, rep_k2, rep_r2 = _any_cached_function(arg)
        rep_state2 = nprng.get_state()
        self.assertEqual(a1, rep_a1, "Return arg changed after rng reset.")
        self.assertEqual(k1, rep_k1, "Return kwarg changed after rng reset.")
        self.assertEqual(
            r1, rep_r1, "Returned different cached random after "
            "rng reset.")
        self.assertEqual(
            str(state1), str(rep_state1), "State of rng after first call "
            "after reset is different.")
        self.assertEqual(rep_a1, rep_a2, "Return arg2 changed after rng "
                         "reset.")
        self.assertEqual(rep_k1, rep_k2, "Return kwarg2 changed after rng "
                         "reset.")
        self.assertEqual(
            r2, rep_r2, "Returned different cached random2 "
            "after rng reset.")
        self.assertEqual(
            str(state2), str(rep_state2), "State of rng after second call "
            "after rng reset is different.")
Example #43
0
 def fixed_regen(self, values):
   # Ensure repeatability of randomness
   cur_pyr_state = random.getstate()
   cur_numpyr_state = npr.get_state()
   try:
     random.setstate(self.pyr_state)
     npr.set_state(self.numpyr_state)
     registerDeterministicLKernels(self.trace, self.scaffold, self.pnodes, values)
     answer = regenAndAttach(self.trace, self.scaffold.border[0], self.scaffold, False, OmegaDB(), {})
   finally:
     random.setstate(cur_pyr_state)
     npr.set_state(cur_numpyr_state)
   return answer
Example #44
0
    def __init__(self, num_dims, **options):

        opts = OPTION_DEFAULTS.copy()
        opts.update(options)
        if hasattr(self, 'options'):
            opts.update(self.options)
        # This is a bit of a mess. Basically to make it work with the GPClassifer --
        # but yes I know the GP shouldn't have code for the sake of those who inherit from it
        # TODO -- clean this up
        self.options = opts

        self.num_dims = num_dims

        self.noiseless = self.options['likelihood'].lower() == "noiseless"

        self._inputs = None  # Matrix of data inputs
        self._values = None  # Vector of data values
        self.pending = None  # Matrix of pending inputs
        # TODO: support meta-data

        self.params = None

        self._cache_list = []  # Cached computations for re-use.
        self._hypers_list = []  # Hyperparameter dicts for each state.
        self._fantasy_values_list = [
        ]  # Fantasy values generated from pending samples.
        self.state = None
        self._random_state = npr.get_state()
        self._samplers = []

        # If you are only doing one fantasy of pending jobs, then don't even both sampling
        # it from the marginal gaussian posterior predictive and instead just take
        # the mean of this distribution. This only has an effect if num_fantasies is 1
        self._use_mean_if_single_fantasy = True

        # get the Kernel type from the options
        try:
            self.input_kernel_class = getattr(spearmint.kernels,
                                              self.options['kernel'])
        except NameError:
            raise Exception("Unknown kernel: %s" % self.options['kernel'])

        self._kernel = None
        self._kernel_with_noise = None

        self.num_states = 0
        self.chain_length = 0

        self.max_cache_bytes = self.options['max_cache_mb'] * 1024 * 1024

        self._build()
Example #45
0
    def OnEventsReplace(self, event):
        data = array(self.model.GetCurrentData()[:])
        n = data.shape[0]

        inputs = {}
        dlg = ParameterDialog([('n', 'IntValidator', str(n))],
                              inputs,
                              'Random choice of n events with replacement')
        if dlg.ShowModal() == wx.ID_OK:
            indices = randint(0, n, inputs['n'])
            name = self.model.GetCurrentGroup()._v_pathname
            self.model.FilterOnRows('SampleOnEventsReplace', indices)
            self.model.AddHistory(('SampleOnRows', [name, inputs, ('state', get_state())]))
        dlg.Destroy()
    def _real_init(self, dims, values, durations):

        self.locker.lock_wait(self.state_pkl)

        self.randomstate = npr.get_state()
        if os.path.exists(self.state_pkl):
            fh = open(self.state_pkl, "rb")
            state = pickle.load(fh)
            fh.close()

            self.D = state["dims"]
            self.ls = state["ls"]
            self.amp2 = state["amp2"]
            self.noise = state["noise"]
            self.mean = state["mean"]
            self.constraint_ls = state["constraint_ls"]
            self.constraint_amp2 = state["constraint_amp2"]
            self.constraint_noise = state["constraint_noise"]
            self.constraint_mean = state["constraint_mean"]
            self.constraint_gain = state["constraint_gain"]
            self.needs_burnin = False
        else:

            # Identify constraint violations
            # Note that we'll treat NaNs and Infs as these values as well
            # as an optional user defined value
            goodvals = np.nonzero(np.logical_and(values != self.bad_value, np.isfinite(values)))[0]

            # Input dimensionality.
            self.D = dims

            # Initial length scales.
            self.ls = np.ones(self.D)
            self.constraint_ls = np.ones(self.D)

            # Initial amplitude.
            self.amp2 = np.std(values[goodvals]) + 1e-4
            self.constraint_amp2 = 1.0

            # Initial observation noise.
            self.noise = 1e-3
            self.constraint_noise = 1e-3
            self.constraint_gain = 1

            # Initial mean.
            self.mean = np.mean(values[goodvals])
            self.constraint_mean = 0.5

        self.locker.unlock(self.state_pkl)
Example #47
0
def print_random_state(mark='', print_process=False):
    """
    Print numpy random state.
    :param mark: str;
    :return: None
    """

    random_state = get_state()

    _, keys, pos, _, _ = random_state
    try:
        print_log('[{}] Seed0={}\ti={}\t@={}'.format(mark, keys[0], pos,
                                                     keys[pos]),
                  print_process=print_process)
    except IndexError:
        print_log('[{}] Seed0={}\ti={}'.format(mark, keys[0], pos),
                  print_process=print_process)
Example #48
0
    def test_validate_random_state(self):
        r1 = random.get_state()
        self.assertTrue(validate_random_state(r1))

        r2 = list(r1)
        self.assertTrue(validate_random_state(r2))

        r3 = deepcopy(r2)
        r3[0] = 'xxx'
        self.assertRaises(InvalidRandomStateException, validate_random_state,
                          r3)

        r3 = deepcopy(r2)
        r3[1] = [1]
        self.assertRaises(InvalidRandomStateException, validate_random_state,
                          r3)

        r3 = deepcopy(r2)
        r3[2] = 1.2
        self.assertRaises(InvalidRandomStateException, validate_random_state,
                          r3)

        r3 = deepcopy(r2)
        r3[3] = 1.2
        self.assertRaises(InvalidRandomStateException, validate_random_state,
                          r3)

        r3 = deepcopy(r2)
        r3[4] = 'x'
        self.assertRaises(InvalidRandomStateException, validate_random_state,
                          r3)

        with self.assertRaisesRegex(InvalidRandomStateException,
                                    '^Random state must be a tuple$'):
            validate_random_state(1.)

        with self.assertRaisesRegex(InvalidRandomStateException,
                                    '^Random state must have length 5$'):
            validate_random_state((1, ))

        with self.assertRaisesRegex(
                InvalidRandomStateException,
                r'^Random number generator random_state\[1\] must be an array of length 624 of unsigned ints$'
        ):
            validate_random_state(('MT19937', [1.] * 624, 1, 1, 1))
Example #49
0
def init_theta(source_embsize, target_embsize, _seed=None):
    if _seed != None:
        ori_state = get_state()
        seed(_seed)

    parameters = []

    # Source Side
    # Wi1 n*n
    parameters.append(init_W(source_embsize, source_embsize))
    # Wi2 n*n
    parameters.append(init_W(source_embsize, source_embsize))
    # bi n*1
    parameters.append(zeros(source_embsize))

    # Wo1 n*n
    parameters.append(init_W(source_embsize, source_embsize))
    # Wo2 n*n
    parameters.append(init_W(source_embsize, source_embsize))
    # bo1 n*1
    parameters.append(zeros(source_embsize))
    # bo2 n*1
    parameters.append(zeros(source_embsize))

    # Target Side
    # Wi1 n*n
    parameters.append(init_W(target_embsize, target_embsize))
    # Wi2 n*n
    parameters.append(init_W(target_embsize, target_embsize))
    # bi n*1
    parameters.append(zeros(target_embsize))

    # Wo1 n*n
    parameters.append(init_W(target_embsize, target_embsize))
    # Wo2 n*n
    parameters.append(init_W(target_embsize, target_embsize))
    # bo1 n*1
    parameters.append(zeros(target_embsize))
    # bo2 n*1
    parameters.append(zeros(target_embsize))

    if _seed != None:
        set_state(ori_state)

    return concatenate(parameters)
Example #50
0
    def _real_init(self, dims, values):
        self.randomstate = npr.get_state()
        # Input dimensionality.
        self.D = dims

        # Initial length scales.
        self.ls = np.ones(self.D)

        # Initial amplitude.
        self.amp2 = np.std(values) + 1e-4

        # Initial observation noise.
        self.noise = 1e-3

        # Initial mean.
        self.mean = np.mean(values)

        # Save hyperparameter samples
        self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls))
Example #51
0
    def __init__(self, num_dims, **options):
        self.num_dims = num_dims

        self._set_likelihood(options)

        log.debug('GP received initialization options: %s' % (options))
        self.verbose = bool(options.get("verbose", False))
        self.mcmc_diagnostics = bool(options.get("mcmc_diagnostics", False))
        self.mcmc_iters = int(options.get("mcmc_iters", DEFAULT_MCMC_ITERS))
        self.burnin = int(options.get("burnin", DEFAULT_BURNIN))
        self.thinning = int(options.get("thinning", 0))

        self._inputs = None  # Matrix of data inputs
        self._values = None  # Vector of data values
        self.pending = None  # Matrix of pending inputs
        # TODO: support meta-data

        self.params = None

        # Default to using the mean prediction for fantasies
        self.num_fantasies = options.get('num_fantasies',
                                         1)  # TODO -- make in config

        self._caching = bool(options.get("caching", True))
        self._cache_list = []  # Cached computations for re-use.
        self._hypers_list = []  # Hyperparameter dicts for each state.
        self._fantasy_values_list = [
        ]  # Fantasy values generated from pending samples.
        self.state = None
        self._random_state = npr.get_state()
        self._samplers = []
        self._use_mean_if_single_fantasy = True

        self._kernel = None
        self._kernel_with_noise = None

        self.num_states = 0
        self.chain_length = 0

        self.max_cache_mb = 256  # TODO -- make in config
        self.max_cache_bytes = self.max_cache_mb * 1024 * 1024

        self._build()
def _reseed(config, offset=0):
    seed = config.getoption('randomly_seed') + offset
    if seed not in random_states:
        random.seed(seed)
        random_states[seed] = random.getstate()
    else:
        random.setstate(random_states[seed])

    if have_factory_boy:
        factory_set_random_state(random_states[seed])

    if have_faker:
        faker_random.setstate(random_states[seed])

    if have_numpy:
        if seed not in np_random_states:
            np_random.seed(seed)
            np_random_states[seed] = np_random.get_state()
        else:
            np_random.set_state(np_random_states[seed])
Example #53
0
    def __init__(self, num_dims, **options):
        self.num_dims = num_dims

        self._set_likelihood(options)

        log.debug('GP received initialization options: %s' % (options))
        self.verbose          = bool(options.get("verbose", False))
        self.mcmc_diagnostics = bool(options.get("mcmc_diagnostics", False))
        self.mcmc_iters       = int(options.get("mcmc_iters", DEFAULT_MCMC_ITERS))
        self.burnin           = int(options.get("burnin", DEFAULT_BURNIN))
        self.thinning         = int(options.get("thinning", 0))

        self._inputs = None # Matrix of data inputs
        self._values = None # Vector of data values
        self.pending = None # Matrix of pending inputs
        # TODO: support meta-data

        self.params = None

        # Default to using the mean prediction for fantasies
        self.num_fantasies = options.get('num_fantasies', 1)  # TODO -- make in config

        self._caching                    = bool(options.get("caching", True))
        self._cache_list                 = [] # Cached computations for re-use.
        self._hypers_list                = [] # Hyperparameter dicts for each state.
        self._fantasy_values_list        = [] # Fantasy values generated from pending samples.
        self.state                       = None
        self._random_state               = npr.get_state()
        self._samplers                   = []
        self._use_mean_if_single_fantasy = True
        
        self._kernel            = None
        self._kernel_with_noise = None

        self.num_states   = 0
        self.chain_length = 0

        self.max_cache_mb    = 256 # TODO -- make in config
        self.max_cache_bytes = self.max_cache_mb*1024*1024

        self._build()
Example #54
0
def phaseout( objective, true_run , stimulus , V2 , phase ):
    iterations[0] = -1
    model = copy.deepcopy( true_run['model'] )
    model['U'] = retina.ring_weights( shape=true_run['model']['U'].shape, 
                                      offset_out=phase)
    phase_objective = LL_with_U( objective , model['U'] , V2 )
    true_objective  = LL_with_U( objective , true_run['model']['U'] , V2 )
    params      = optimize_V1( phase_objective , true_run , model['U'], V2 )
    opt_params  = optimize_V1( true_objective  , true_run , true_run['model']['V'], V2 )
    model['V']  = params['V1']
    dLopt = true_objective.LL(true_run['model']['V']) - true_objective.LL(opt_params)
    dLL   = phase_objective.LL(params) - true_objective.LL(opt_params)
    seed        = Rand.get_state()
    true_100    = retina.run_LNLNP( true_model , stimulus = stimulus , 
                                    keep=frozenset(['intensity']), N_timebins = 100000 )
    Rand.set_state(seed)
    this_100 = retina.run_LNLNP( model , stimulus = stimulus , 
                                 keep=frozenset(['intensity']), N_timebins = 100000 )
    intensities = np.vstack([true_100['intensity'].flatten(),this_100['intensity'].flatten()])
    order       = np.argsort( intensities[0,:] )
    intensities = intensities[:,order[::20]]
    p.close('all')
    p.figure(1, figsize=(10,12))
    ax0 = p.subplot(3,1,1)
    p.plot( true_100['model']['V'].T )
    #ax0.xaxis.set_label_text('subunits')
    p.title('V filters')
    ax1 = p.subplot(3,1,2)
    p.plot( true_100['model']['U'].T )
    #ax1.xaxis.set_label_text('cones')
    p.title('True U filters ,  sigma = %.0f' % (sigma_spatial[0]))
    ax2 = p.subplot(3,1,3)
    p.semilogy( intensities.T )
    ax2.xaxis.set_label_text('samples reordered by intensity of true model')
    ax2.yaxis.set_label_text('intensities in spikes / bin')
    p.title('Intensities of true vs. out-of-phase model  (dLL=%.1e bits/spike, dLopt=%.1e) ' % \
             (dLL/np.log(2.), dLopt/np.log(2.)) )
    #p.subplot(2,1,2)
    #p.plot( intensities.T )
    p.savefig('/Users/kolia/Desktop/out-of-phase_sigma%d_phase%.1f.pdf' % \
             (true_run['model']['sigma_spatial'][0], phase),format='pdf')
Example #55
0
def save_rng(fname='.numpy-rng-state'):
    """
    Save the state of NumPy's RNG to a file in the CWD ('.numpy-rng-state' by
    default).  Backup the previous two saved states if present:  If the RNG
    state file exists (from a previous save), rename the previous one with a
    '.1' suffix.  If a '.1' file exists, rename it with a '.2' suffix.
    """
    state = random.get_state()
    if state[0] == MT_id:
        id, state = state[0], (state[1], state[2]) # (ID, (key, pos)) for MT
    else:
        raise RuntimeError, 'numpy.random using unrecognized RNG type!'
    if path.exists(fname):
        fname1 = fname + '.1'
        if path.exists(fname1):
            fname2 = fname + '.2'
            os.rename(fname1, fname2)
        os.rename(fname, fname1)
    ofile = open(fname, 'w')
    pickle.dump((id, state), ofile)
    ofile.close()
Example #56
0
 def sample(self, nsamp):
     """
     Return a set of nsamp samples from the population, sampled with
     replacement.
     """
     # *** Implement equiprob case.
     if self.equiprob:
         raise NotImplementedError, 'Awaiting code...'
     if not self.did_init:
         self.sampler = _ppssampler(self.weights)
         self.did_init = True
     # Track the RNG state within the sampler, to update NumPy's RNG state.
     # Internally we only use the MT state; any extra state for cached
     # normal or other samples can just be copied.
     rng_state = random.get_state()
     mt_state, extra_state = rng_state[:3], rng_state[3:]
     set_rng_state(*mt_state)  # *** modify to handle full rng state
     indices = self.sampler.sample(nsamp)
     new_state = list(get_rng_state())
     new_state.extend(extra_state)
     random.set_state(new_state)
     return [self.items[i] for i in indices]
Example #57
0
def unison_shuffle(a, b):
	# constant seed
	state = random.get_state()
	random.shuffle(a)
	random.set_state(state)
	random.shuffle(b)
Example #58
0
 def save_random_state():
     state = get_state()
     try:
         yield
     finally:
         set_state(state)
Example #59
0
def test_all_world2pix(
    fname=None,
    ext=0,
    tolerance=1.0e-4,
    origin=0,
    random_npts=250000,
    mag=2,
    adaptive=False,
    maxiter=20,
    detect_divergence=True,
):
    """Test all_world2pix, iterative inverse of all_pix2world"""
    from numpy import random
    from datetime import datetime
    from astropy.io import fits
    from os import path

    # Open test FITS file:
    if fname is None:
        fname = get_pkg_data_filename("data/j94f05bgq_flt.fits")
        ext = ("SCI", 1)
    if not path.isfile(fname):
        raise IOError("Input file '{:s}' to 'test_all_world2pix' not found.".format(fname))
    h = fits.open(fname)
    w = wcs.WCS(h[ext].header, h)
    h.close()
    del h

    crpix = w.wcs.crpix
    ncoord = crpix.shape[0]

    # Assume that CRPIX is at the center of the image and that the image
    # has an even number of pixels along each axis:
    naxesi = list(2 * crpix.astype(np.int) - origin)

    # Generate integer indices of pixels (image grid):
    img_pix = np.dstack([i.flatten() for i in np.meshgrid(*map(range, naxesi))])[0]

    # Generage random data (in image coordinates):
    startstate = random.get_state()
    random.seed(123456789)
    rnd_pix = np.random.rand(random_npts, ncoord)
    random.set_state(startstate)

    # Scale random data to cover the entire image (or more, if 'mag' > 1).
    # Assume that CRPIX is at the center of the image and that the image
    # has an even number of pixels along each axis:
    mwidth = 2 * mag * (crpix - origin)
    rnd_pix = crpix - 0.5 * mwidth + (mwidth - 1) * rnd_pix

    # Reference pixel coordinates in image coordinate system (CS):
    test_pix = np.append(img_pix, rnd_pix, axis=0)
    # Reference pixel coordinates in sky CS using forward transformation:
    all_world = w.all_pix2world(test_pix, origin)

    try:
        runtime_begin = datetime.now()
        # Apply the inverse iterative process to pixels in world coordinates
        # to recover the pixel coordinates in image space.
        all_pix = w.all_world2pix(
            all_world,
            origin,
            tolerance=tolerance,
            adaptive=adaptive,
            maxiter=maxiter,
            detect_divergence=detect_divergence,
        )
        runtime_end = datetime.now()
    except wcs.wcs.NoConvergence as e:
        runtime_end = datetime.now()
        ndiv = 0
        if e.divergent is not None:
            ndiv = e.divergent.shape[0]
            print("There are {} diverging solutions.".format(ndiv))
            print("Indices of diverging solutions:\n{}".format(e.divergent))
            print("Diverging solutions:\n{}\n".format(e.best_solution[e.divergent]))
            print(
                "Mean radius of the diverging solutions: {}".format(
                    np.mean(np.linalg.norm(e.best_solution[e.divergent], axis=1))
                )
            )
            print(
                "Mean accuracy of the diverging solutions: {}\n".format(
                    np.mean(np.linalg.norm(e.accuracy[e.divergent], axis=1))
                )
            )
        else:
            print("There are no diverging solutions.")

        nslow = 0
        if e.slow_conv is not None:
            nslow = e.slow_conv.shape[0]
            print("There are {} slowly converging solutions.".format(nslow))
            print("Indices of slowly converging solutions:\n{}".format(e.slow_conv))
            print("Slowly converging solutions:\n{}\n".format(e.best_solution[e.slow_conv]))
        else:
            print("There are no slowly converging solutions.\n")

        print("There are {} converged solutions.".format(e.best_solution.shape[0] - ndiv - nslow))
        print("Best solutions (all points):\n{}".format(e.best_solution))
        print("Accuracy:\n{}\n".format(e.accuracy))
        print(
            "\nFinished running 'test_all_world2pix' with errors.\n"
            "ERROR: {}\nRun time: {}\n".format(e.args[0], runtime_end - runtime_begin)
        )
        raise e

    # Compute differences between reference pixel coordinates and
    # pixel coordinates (in image space) recovered from reference
    # pixels in world coordinates:
    errors = np.sqrt(np.sum(np.power(all_pix - test_pix, 2), axis=1))
    meanerr = np.mean(errors)
    maxerr = np.amax(errors)
    print(
        "\nFinished running 'test_all_world2pix'.\n"
        "Mean error = {0:e}  (Max error = {1:e})\n"
        "Run time: {2}\n".format(meanerr, maxerr, runtime_end - runtime_begin)
    )

    assert maxerr < 2.0 * tolerance
Example #60
0
    def __enter__(self):
        from numpy import random

        self.startstate = random.get_state()
        random.seed(self.seed)