Example #1
0
 def __store_estimate(self):
     for i_method in range(0, self.n_methods):
         self.estimate[i_method, :]\
             = np.unravel_index(
                 np.nanargmin(self.criterion_result[i_method, :, :]),
                 self.criterion_result[i_method, :, :].shape)
         self.best_actvt[i_method]\
             = self.actvt_result\
             [self.estimate[i_method, 0]][self.estimate[i_method, 1]]
         self.best_base[i_method]\
             = self.base_result\
             [self.estimate[i_method, 0]][self.estimate[i_method, 1]]
         self.best_completion[i_method]\
             = self.completion_result\
             [self.estimate[i_method, 0]][self.estimate[i_method, 1]]
     if not (self.true_width == None):
         for i_method in range(0, self.n_methods):
             self.estimate_given_width[i_method]\
                 = np.nanargmin(self.criterion_result[i_method, self.true_width, :])
             self.best_actvt_given_width[i_method]\
                 = self.actvt_result\
                 [self.true_width][self.estimate_given_width[i_method]]
             self.best_base_given_width[i_method]\
                 = self.base_result\
                 [self.true_width][self.estimate_given_width[i_method]]
             self.best_completion_given_width[i_method]\
                 = self.completion_result\
                 [self.true_width][self.estimate_given_width[i_method]]
def getPerpContourInd(skeleton, skel_ind, contour_side1, contour_side2, contour_width):
    #get the closest point in the contour from a line perpedicular to the skeleton.
    
    #get the slop of a line perpendicular to the keleton
    dR = skeleton[skel_ind+1] - skeleton[skel_ind-1]
    #m = dR[1]/dR[0]; M = -1/m
    a = -dR[0]
    b = +dR[1]
    
    c = b*skeleton[skel_ind,1]-a*skeleton[skel_ind,0]
    
    max_width_squared = np.max(contour_width)**2
    #modified from https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
    #a = M, b = -1
    
    #make sure we are not selecting a point that get traversed by a coiled worm
    dist2cnt1 = np.sum((contour_side1-skeleton[skel_ind])**2,axis=1)
    d1 = np.abs(a*contour_side1[:,0] - b*contour_side1[:,1]+ c)
    d1[dist2cnt1>max_width_squared] = np.nan
    cnt1_ind = np.nanargmin(d1)
    
    dist2cnt2 = np.sum((contour_side2-skeleton[skel_ind])**2,axis=1)
    d2 = np.abs(a*contour_side2[:,0] - b*contour_side2[:,1]+ c)
    d2[dist2cnt2>max_width_squared] = np.nan
    cnt2_ind = np.nanargmin(d2)
    return cnt1_ind, cnt2_ind
def get_spans(adult_df, a_variable, method = 'young', fraction = 0.5, reverse_direction = False):
	'''
	Get healthspans as defined by young adult function for a_variable.
	'''
	data_values = adult_df.mloc(measures = [a_variable])[:, 0, :]
	if reverse_direction:
		data_values = data_values*-1
	if method == 'young':
		young_adult = np.abs(adult_df.mloc(measures = ['egg_age'])[:, 0, :])
		young_adult = np.nanargmin(young_adult, axis = 1)
		cutoff_value = np.array([data_values[i, young_adult[i]] for i in range(0, young_adult.shape[0])])
		cutoff_value = np.mean(cutoff_value)*fraction
	if method == 'overall_time':
		all_data = np.ndarray.flatten(data_values)
		all_data = all_data[~np.isnan(all_data)]
		cutoff_value = np.percentile(all_data, (1-fraction)*100)

	# Compute the time of crossing the health-gero threshold.
	span_side = data_values - cutoff_value
	health_span_length = np.nanargmin(np.abs(span_side), axis = 1)
	health_span_length = np.array([adult_df.ages[a_time]*24 for a_time in health_span_length])

	# Deal with the special cases of individuals that spend their entire lives in health or gerospan.
	span_list = [a_span[~np.isnan(a_span)] for a_span in span_side]
	only_health = np.array([(a_span > 0).all() for a_span in span_list])
	only_gero = np.array([(a_span < 0).all() for a_span in span_list])
	adultspans = selectData.get_adultspans(adult_df)
	health_span_length[only_health] = adultspans[only_health]
	health_span_length[only_gero] = 0
	return health_span_length
def divide_spans(complete_df):
	'''
	Divide individual variables into useful spans and return an array of transition times.
	'''
	span_variables = list(complete_df.key_measures)
	span_cutoffs = []
	for a_variable in span_variables:
		data_values = complete_df.mloc(measures = [a_variable])[:, 0, :]
		# Middle overall value.
		if a_variable in ['intensity_95', 'intensity_90', 'intensity_80', 'life_texture']:
			cutoff_value = np.ndarray.flatten(data_values)
			cutoff_value = cutoff_value[~np.isnan(cutoff_value)]
			cutoff_value = np.mean(cutoff_value)
			span_side = np.abs(data_values - cutoff_value)
			span_side = np.nanargmin(span_side, axis = 1)
			span_cutoffs.append(span_side)
		# Overall young adult value is 'healthy'.
		elif a_variable in ['bulk_movement']:
			young_adult = np.abs(complete_df.mloc(measures = ['egg_age'])[:, 0, :])
			young_adult = np.nanargmin(young_adult, axis = 1)
			cutoff_value = np.array([data_values[i, young_adult[i]] for i in range(0, young_adult.shape[0])])
			cutoff_value = np.mean(cutoff_value)/2
			span_side = np.abs(data_values - cutoff_value)
			span_side = np.nanargmin(span_side, axis = 1)
			span_cutoffs.append(span_side)
		# Point of own first maximum value.
		elif a_variable in ['total_size', 'cumulative_eggs', 'cumulative_area', 'adjusted_size']:
			span_side = np.nanargmax(data_values, axis = 1)
			span_cutoffs.append(span_side)
		# Raise an exception if I can't find the variable.
		else:
			raise BaseException('Can\'t find ' + a_variable + '.')
	return (span_variables, np.array(span_cutoffs))
Example #5
0
    def mouse_drag(self, event):
        '''

        '''

        if event.inaxes == self.ax and event.button == 1:

            # Index of nearest point
            i = np.nanargmin(((event.xdata - self.x) / self.nx) ** 2)
            j = np.nanargmin(((event.ydata - self.y) / self.ny) ** 2)

            if (i == self.last_i) and (j == self.last_j):
                return
            else:
                self.last_i = i
                self.last_j = j

            # Toggle pixel
            if self.aperture[j, i]:
                self.aperture[j, i] = 0
            else:
                self.aperture[j, i] = 1

            # Update the contour
            self.update()
Example #6
0
def test_reductions_2D_int():
    x = np.arange(1, 122).reshape((11, 11)).astype('i4')
    a = da.from_array(x, chunks=(4, 4))

    reduction_2d_test(da.sum, a, np.sum, x)
    reduction_2d_test(da.prod, a, np.prod, x)
    reduction_2d_test(da.mean, a, np.mean, x)
    reduction_2d_test(da.var, a, np.var, x, False)  # Difference in dtype algo
    reduction_2d_test(da.std, a, np.std, x, False)  # Difference in dtype algo
    reduction_2d_test(da.min, a, np.min, x, False)
    reduction_2d_test(da.max, a, np.max, x, False)
    reduction_2d_test(da.any, a, np.any, x, False)
    reduction_2d_test(da.all, a, np.all, x, False)

    reduction_2d_test(da.nansum, a, np.nansum, x)
    with ignoring(AttributeError):
        reduction_2d_test(da.nanprod, a, np.nanprod, x)
    reduction_2d_test(da.nanmean, a, np.mean, x)
    reduction_2d_test(da.nanvar, a, np.nanvar, x, False)  # Difference in dtype algo
    reduction_2d_test(da.nanstd, a, np.nanstd, x, False)  # Difference in dtype algo
    reduction_2d_test(da.nanmin, a, np.nanmin, x, False)
    reduction_2d_test(da.nanmax, a, np.nanmax, x, False)

    assert eq(da.argmax(a, axis=0), np.argmax(x, axis=0))
    assert eq(da.argmin(a, axis=0), np.argmin(x, axis=0))
    assert eq(da.nanargmax(a, axis=0), np.nanargmax(x, axis=0))
    assert eq(da.nanargmin(a, axis=0), np.nanargmin(x, axis=0))
    assert eq(da.argmax(a, axis=1), np.argmax(x, axis=1))
    assert eq(da.argmin(a, axis=1), np.argmin(x, axis=1))
    assert eq(da.nanargmax(a, axis=1), np.nanargmax(x, axis=1))
    assert eq(da.nanargmin(a, axis=1), np.nanargmin(x, axis=1))
Example #7
0
def test_reductions_1D(dtype):
    x = np.arange(5).astype(dtype)
    a = da.from_array(x, chunks=(2,))

    reduction_1d_test(da.sum, a, np.sum, x)
    reduction_1d_test(da.prod, a, np.prod, x)
    reduction_1d_test(da.mean, a, np.mean, x)
    reduction_1d_test(da.var, a, np.var, x)
    reduction_1d_test(da.std, a, np.std, x)
    reduction_1d_test(da.min, a, np.min, x, False)
    reduction_1d_test(da.max, a, np.max, x, False)
    reduction_1d_test(da.any, a, np.any, x, False)
    reduction_1d_test(da.all, a, np.all, x, False)

    reduction_1d_test(da.nansum, a, np.nansum, x)
    with ignoring(AttributeError):
        reduction_1d_test(da.nanprod, a, np.nanprod, x)
    reduction_1d_test(da.nanmean, a, np.mean, x)
    reduction_1d_test(da.nanvar, a, np.var, x)
    reduction_1d_test(da.nanstd, a, np.std, x)
    reduction_1d_test(da.nanmin, a, np.nanmin, x, False)
    reduction_1d_test(da.nanmax, a, np.nanmax, x, False)

    assert eq(da.argmax(a, axis=0), np.argmax(x, axis=0))
    assert eq(da.argmin(a, axis=0), np.argmin(x, axis=0))
    assert eq(da.nanargmax(a, axis=0), np.nanargmax(x, axis=0))
    assert eq(da.nanargmin(a, axis=0), np.nanargmin(x, axis=0))

    assert eq(da.argmax(a, axis=0, split_every=2), np.argmax(x, axis=0))
    assert eq(da.argmin(a, axis=0, split_every=2), np.argmin(x, axis=0))
    assert eq(da.nanargmax(a, axis=0, split_every=2), np.nanargmax(x, axis=0))
    assert eq(da.nanargmin(a, axis=0, split_every=2), np.nanargmin(x, axis=0))
Example #8
0
    def _initialize(self):
        """ Enforce bounds """
        system = self._system

        u = system.vec['u'].array
        du = system.vec['du'].array
        lower = system.vec['lb'].array
        upper = system.vec['ub'].array
        self.alpha = 1.0
        if not numpy.isnan(lower).all():
            lower_const = u + self.alpha*du - lower
            ind = numpy.nanargmin(lower_const)
            if lower_const[ind] < 0:
                self.alpha = (lower[ind] - u[ind]) / du[ind]
        if not numpy.isnan(upper).all():
            upper_const = upper - u - self.alpha*du
            ind = numpy.nanargmin(upper_const)
            if upper_const[ind] < 0:
                self.alpha = (upper[ind] - u[ind]) / du[ind]
        self.info = self.alpha

        norm0 = self._norm()
        if norm0 == 0.0:
            norm0 = 1.0
        system.vec['u'].array[:] += self.alpha * system.vec['du'].array[:]
        norm = self._norm()
        return norm0, norm
def dataindex(x_loc,y_loc,datain_loc):
    x_loc = float(x_loc)
    y_loc = float(y_loc)
    radius = np.sqrt(x_loc**(2.)+y_loc**(2.))
    angle = np.arctan(x_loc/y_loc)
    line_radius = datain_loc[np.nanargmin((np.abs(datain_loc['r']-(radius))), axis=0)]
    radius = line_radius[3]
    line_angle = datain_loc[datain_loc['r']==radius][np.nanargmin((np.abs((datain_loc[datain_loc['r']==radius]['theta'])-(angle))), axis=0)]
    angle = line_angle[4]
    return np.nanargmin((np.abs(datain_loc['r']-(radius)) + np.abs(datain_loc ['theta']-(angle))), axis=0)
def mapmean(tempDF, meta, name = '', option = 0): 
    import cartopy.crs as ccrs
    from cartopy.io.img_tiles import MapQuestOSM
    from mpl_toolkits.axes_grid1 import make_axes_locatable
    #fig  = plt.figure(figsize=(30, 30))
    x = meta['location:Longitude'].values
    y = meta['location:Latitude'].values
    c = tempDF[meta.index].mean()
    marker_size = 350 
    imagery = MapQuestOSM()
    fig = plt.figure(figsize=[15,15])
    ax = plt.axes(projection=imagery.crs)
    
    ax.set_extent(( meta['location:Longitude'].min()-.005, 
                   meta['location:Longitude'].max()+.005 , 
                   meta['location:Latitude'].min()-.005,
                   meta['location:Latitude'].max()+.005))
    ax.add_image(imagery, 14)

    cmap = matplotlib.cm.OrRd
    bounds = np.linspace(round((c.mean()-3)),round((c.mean()+3)),13)
    norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
    plotHandle = ax.scatter(x,y,c = c, s = marker_size, transform=ccrs.Geodetic(), 
                 cmap = cmap,
                 norm = norm)
    
    if option ==0 : 
        cbar1 = plt.colorbar(plotHandle, label = 'Temperature in $^\circ $C')
    else : 
        cbar1 = plt.colorbar(plotHandle, label = option)

    lon = x[np.nanargmax(c)]
    lat = y[np.nanargmax(c)]
    at_x, at_y = ax.projection.transform_point(lon, lat,
                                               src_crs=ccrs.Geodetic())
    plt.annotate(
        '%2.1f'%np.nanmax(c.values), xy=(at_x, at_y), #xytext=(30, 20), textcoords='offset points',
        color='black', backgroundcolor='none', size=22,
        )

    lon = x[np.nanargmin(c)]
    lat = y[np.nanargmin(c)]
    at_x, at_y = ax.projection.transform_point(lon, lat,
                                               src_crs=ccrs.Geodetic())
    plt.annotate(
        '%2.1f'%np.nanmin(c.values), xy=(at_x, at_y), #xytext=(30, 20), textcoords='offset points',
        color='black', size = 22, backgroundcolor='none')

    plt.annotate(
        '$\mu = $ %2.1f, $\sigma = $ %2.1f'%(np.nanmean(c.values), np.nanstd(c.values)), (0.01,0.01), xycoords ='axes fraction', #xytext=(30, 20), textcoords='offset points',
        color='black', size = 22, backgroundcolor='none')
    
    plt.title('Mean Temperature %s'%name)
    filename = './plots/meantempmap%s.eps'%name
    plt.savefig(filename, format = 'eps', dpi = 600)
Example #11
0
def closest_real_time(complete_df, a_worm, a_time, egg_mode = True):
	'''
	For a_worm at a_time, find the closest real time point.
	'''
	time_split = a_time.split('.')
	hours_time = int(time_split[0])*24 + int(time_split[1])*3
	if not egg_mode:
		time_index = np.nanargmin(np.abs(complete_df.raw[a_worm].loc[:, 'age'] - hours_time))
	else:
		time_index = np.nanargmin(np.abs(complete_df.raw[a_worm].loc[:, 'egg_age'] - hours_time))
	real_time = complete_df.raw[a_worm].index[time_index]
	return real_time
Example #12
0
def test_reductions_2D_nans():
    # chunks are a mix of some/all/no NaNs
    x = np.full((4, 4), np.nan)
    x[:2, :2] = np.array([[1, 2], [3, 4]])
    x[2, 2] = 5
    x[3, 3] = 6
    a = da.from_array(x, chunks=(2, 2))

    reduction_2d_test(da.sum, a, np.sum, x, False, False)
    reduction_2d_test(da.prod, a, np.prod, x, False, False)
    reduction_2d_test(da.mean, a, np.mean, x, False, False)
    reduction_2d_test(da.var, a, np.var, x, False, False)
    reduction_2d_test(da.std, a, np.std, x, False, False)
    reduction_2d_test(da.min, a, np.min, x, False, False)
    reduction_2d_test(da.max, a, np.max, x, False, False)
    reduction_2d_test(da.any, a, np.any, x, False, False)
    reduction_2d_test(da.all, a, np.all, x, False, False)

    reduction_2d_test(da.nansum, a, np.nansum, x, False, False)
    reduction_2d_test(da.nanprod, a, nanprod, x, False, False)
    reduction_2d_test(da.nanmean, a, np.nanmean, x, False, False)
    with pytest.warns(None):  # division by 0 warning
        reduction_2d_test(da.nanvar, a, np.nanvar, x, False, False)
    with pytest.warns(None):  # division by 0 warning
        reduction_2d_test(da.nanstd, a, np.nanstd, x, False, False)
    with pytest.warns(None):  # all NaN axis warning
        reduction_2d_test(da.nanmin, a, np.nanmin, x, False, False)
    with pytest.warns(None):  # all NaN axis warning
        reduction_2d_test(da.nanmax, a, np.nanmax, x, False, False)

    assert_eq(da.argmax(a), np.argmax(x))
    assert_eq(da.argmin(a), np.argmin(x))
    with pytest.warns(None):  # all NaN axis warning
        assert_eq(da.nanargmax(a), np.nanargmax(x))
    with pytest.warns(None):  # all NaN axis warning
        assert_eq(da.nanargmin(a), np.nanargmin(x))
    assert_eq(da.argmax(a, axis=0), np.argmax(x, axis=0))
    assert_eq(da.argmin(a, axis=0), np.argmin(x, axis=0))
    with pytest.warns(None):  # all NaN axis warning
        assert_eq(da.nanargmax(a, axis=0), np.nanargmax(x, axis=0))
    with pytest.warns(None):  # all NaN axis warning
        assert_eq(da.nanargmin(a, axis=0), np.nanargmin(x, axis=0))
    assert_eq(da.argmax(a, axis=1), np.argmax(x, axis=1))
    assert_eq(da.argmin(a, axis=1), np.argmin(x, axis=1))
    with pytest.warns(None):  # all NaN axis warning
        assert_eq(da.nanargmax(a, axis=1), np.nanargmax(x, axis=1))
    with pytest.warns(None):  # all NaN axis warning
        assert_eq(da.nanargmin(a, axis=1), np.nanargmin(x, axis=1))
    def fit(self, t, n=10, retry=True):
        """
        Fit for the radius of an event from a given set of
        hit times `t`. Seed the initial position by searching
        for the most likely radius at `n` radii. If the fit
        fails and `retry` is True, try the fit again by seeding
        the fit with the best point from `n`*10 trial radii.
        """
        def nll(pars):
            l, = pars
            return -np.log(self.pdf(t,l=l)).sum()

        # seed the fit with the best radius in l0
        l0 = np.linspace(0,self.r,n)
        x0 = [-np.log(self.pdf(t,x)).sum() for x in l0]
        x0 = l0[np.nanargmin(x0)]

        xopt, fopt, iter, funcalls, warnflag = \
            fmin(nll,[x0],disp=False,full_output=True)

        if warnflag:
            if n < 1e3 and retry:
                print 'retrying with n=%i' % (n*10)
                return self.fit(t,n*10)
            print 'fit failed.'
        return xopt
Example #14
0
    def maximum_posterior(self):
        """Returns the maximum log posterior (minimum negative log posterior)
        from the set of chains, along with the position giving the maximum
        posterior.
        """
        if not self.chains:
            raise Exception("There are no chains in the MCMCSet.")

        max_posterior = np.inf
        max_posterior_position = None
        for chain in self.chains:
            # Make sure the chain is not empty!
            if len(chain.posteriors) > 0:
                chain_max_posterior_index = np.nanargmin(chain.posteriors)
                chain_max_posterior = \
                                chain.posteriors[chain_max_posterior_index]
                if chain_max_posterior < max_posterior:
                    max_posterior = chain_max_posterior
                    max_posterior_position = \
                                chain.positions[chain_max_posterior_index]

        # Check if there are no positions
        if max_posterior_position is None:
            raise NoPositionsException('The maximum posterior could not be determined '
                                       'because there are no accepted positions.')

        return (max_posterior, max_posterior_position)
Example #15
0
    def apply_roi(self, roi):
        if not isinstance(roi, PointROI):
            raise NotImplementedError("Only PointROI supported")

        if self._layout is None or self.display_data is None:
            return

        x, y = roi.x, roi.y
        if not roi.defined():
            return

        xs, ys = self._layout[:, ::3]
        parent_ys = self._layout[1, 1::3]

        delt = np.abs(x - xs)
        delt[y > ys] = np.nan
        delt[y < parent_ys] = np.nan

        if np.isfinite(delt).any():
            select = np.nanargmin(delt)
            if self.select_substruct:
                select = self._substructures(select)
            select = np.asarray(select, dtype=np.int)
        else:
            select = np.array([], dtype=np.int)

        state = CategorySubsetState(self.display_data.pixel_component_ids[0],
                                    select)

        EditSubsetMode().update(self.collect, state,
                                focus_data=self.display_data)
Example #16
0
    def get_closest_inconsistencies(self, vector, distance_measure, max_height=numpy.inf, check_constant=False,
                                    constant_prob=1.0):
        num_trees = len(self.trees) if max_height >= len(self.height_levels) else self.height_levels[max_height]

        consistent_indices = ~numpy.isnan(vector)
        if not numpy.any(consistent_indices):
            tree_index = random.randrange(num_trees)
            return self.trees[tree_index][:], self.semantic_array[tree_index]
        consistent_vector = vector[consistent_indices]

        if not numpy.all(numpy.isfinite(consistent_vector)):
            tree_index = random.randrange(num_trees)
            return self.trees[tree_index][:], self.semantic_array[tree_index]
        if is_constant(consistent_vector):
            return [gp.Terminal(consistent_vector[0], False, float)], [consistent_vector[0]] * len(vector)

        dists = distance_measure(self.semantic_array[:num_trees, consistent_indices], consistent_vector, axis=1)
        min_distance_index = numpy.nanargmin(dists)

        if check_constant and random.random() < constant_prob:
            constant = numpy.median(consistent_vector).item()
            constant_distance = distance_measure(consistent_vector, constant)
            if constant_distance < dists[min_distance_index]:
                return [gp.Terminal(constant, False, float)], [constant] * len(vector)

        return self.trees[min_distance_index][:], self.semantic_array[min_distance_index]
def KNNmatch(data1, data2, confidence_list, return_sum):
    # Perform KNNmatch algorithm on data
    
    match = np.zeros((len(data1), len(confidence_list)))
    pair_scores = np.zeros((len(data1), 2))
    pair_index = np.zeros((len(data1),2))
    for i in np.arange(len(data1)):
        score = np.zeros((len(data2)))
        for j in np.arange(len(data2)):
            score[j] = sum(np.square(data1[i,:] - data2[j,:]))
        imin0 = np.argmin(score)
        min0 = score[imin0]
        score[imin0] = np.nan
        imin1 = np.nanargmin(score)
        min1 = np.nanmin(score)
        pair_scores[i,:] = min0,min1
        pair_index[i,:] = imin0,imin1
        for n in np.arange(len(confidence_list)):
            if min0 < float(confidence_list[n]) / 100 * min1:
                match[i,n] = 1
                

    print np.sum(match, axis = 0), len(data1)
    return

    return match, pair_scores, pair_index
Example #18
0
    def maximum_likelihood(self):
        """Returns the maximum log likelihood (minimum negative log likelihood)
        from the set of chains, along with the position giving the maximum
        likelihood.
        """
        if not self.chains:
            raise Exception("There are no chains in the MCMCSet.")

        max_likelihood = np.inf
        max_likelihood_position = None
        for chain in self.chains:
            # Make sure the chain is not empty!
            if len(chain.likelihoods) > 0:
                chain_max_likelihood_index = np.nanargmin(chain.likelihoods)
                chain_max_likelihood = \
                                chain.likelihoods[chain_max_likelihood_index]
                if chain_max_likelihood < max_likelihood:
                    max_likelihood = chain_max_likelihood
                    max_likelihood_position = \
                                chain.positions[chain_max_likelihood_index]

        # Check if there are no positions
        if max_likelihood_position is None:
            raise NoPositionsException('The maximum likelihood could not be '
                        'determined because there are no accepted positions.')
        return (max_likelihood, max_likelihood_position)
	def decide_migration_migrationlikelihood_woi(self):
		migrate_me_maybe = (self.window_overload_index > self.relocation_thresholds)[0]
		if np.sum(migrate_me_maybe) > 0:
			indexes = np.array(np.where(migrate_me_maybe)).tolist()[0] # potential migration sources
			set_of_vms = list()
			for i in indexes:
				partial = (self.location[:, i] == 1).transpose()
				newly_found = np.array(np.where(partial)).tolist()
				set_of_vms += newly_found[0]
			set_of_vms = sorted(set_of_vms)
			pms = [x.get_pm() for x in self.vms]
			pm_volumes = np.array([x.get_volume() for x in self.pms])
			vm_volumes = np.array([x.get_volume_actual() for x in self.vms])
			vm_migrations = np.array([x.get_migrations() for x in self.vms])
			available_volume_per_pm = pm_volumes - self.physical_volume_vector
			available_capacity = [available_volume_per_pm[x.get_pm()] for x in self.vms]
			plan_coefficients = np.array([x.plan.get_coefficient() for x in self.vms])
			minimize_me = -1.0/plan_coefficients * (vm_volumes + available_capacity) + plan_coefficients * vm_migrations
			vm_migrate = np.nanargmin(minimize_me)
			pm_source = self.vms[vm_migrate].get_pm()
			# avoiding to select the source machine as destination by using nan
			available_volume_per_pm[pm_source] = np.nan
			pm_destination = np.nanargmax(available_volume_per_pm)
			self.migrate(vm_migrate, pm_source, pm_destination)
			self.integrated_overload_index[0,pm_source] = 0
			
Example #20
0
 def find_closest(self):
     msg = self.current_laser_msg
     rngs = msg.ranges
     idx = np.nanargmin(rngs)
     self.say("idx: " + str(idx))                
     rad = self.index_to_rad(idx)
     return rngs[idx], rad
Example #21
0
def johnson(d, debug=False):
    """
    Méthode approchée avec garantie de performance (Johnson)
    d = Jeu de donnée
    """

    assert np.size(d, 1) > 1, "2 machines au moins"
    if debug and np.size(d, 1) != 2: print("Attention: Seul les deux premières machines sont pris en compte.")

    n, m = np.size(d, 0), 3
    A, B, C = range(0,m)
    X = list(range(0,n))
    G = list()
    D = list()

    while X:
        # Chaque tâche ayant été traité voit ses durées mettre à NaN.
        # np.nanargmin récupère ensuite la position dans la matrice
        # où la durée minimum est située.
        pos = np.nanargmin([[d[i,j] if i in X else np.nan for j in [A,B]] for i in range(n)])

        # Je déduit ensuite la ligne et la colonne correspondant à cette position
        # i.e. la machine et la tâche.
        i, j = pos//(m-1), pos%(n-1)

        # Si la durée de la tâche appartient à la machine A
        # je la met dans ma liste de gauche G, sinon je l'insère
        # dans ma liste de droite en première position.
        G.append(i) if j == A else D.insert(0, i)

        # Ma tâche en cours est traitée
        X.remove(i)

    return G + D, evaluation(d, G+D, [])
def otsu(img):
    # Find within-class variance for each candidate threshold value. Choose the
    # one that minimises it.
    n_pix = np.prod(img.shape)

    threshold_variances = np.inf * np.ones((254,1))
    for i in range(254):
        t = i + 1
        bin_masks = [img < t, img >= t]
        # bin_masks[0] gives the less-than mask.
        # bin_masks[1] gives the geq mask.
        vals = map(lambda mask : img[mask], bin_masks)

        N = map(np.sum, bin_masks)
        mu = map(np.mean, vals)
        sigma = map(np.std, vals)
        variance = map(lambda x : x ** 2, sigma)
        threshold_variances[i] = \
                (N[0] * variance[0] + N[1] * variance[1]) / n_pix
    
    min_thresh = np.nanargmin(threshold_variances[1:255])
    thresholded = np.copy(img)

    thresholded[img < min_thresh] = 0
    thresholded[img >= min_thresh] = 1
    return thresholded
Example #23
0
    def make_timing_params(self, begin, end, snap_vred=True):

        '''Compute tight parameterized time ranges to include given timings.

        Calculates appropriate time ranges to cover given begin and end timings
        over all GF points in the store. A dict with the following keys is
        returned:

        * ``'tmin'``: time [s], minimum of begin timing over all GF points
        * ``'tmax'``: time [s], maximum of end timing over all GF points
        * ``'vred'``, ``'tmin_vred'``: slope [m/s] and offset [s] of reduction
          velocity [m/s] appropriate to catch begin timing over all GF points
        * ``'tlenmax_vred'``: maximum time length needed to cover all end
          timings, when using linear slope given with (`vred`, `tmin_vred`) as
          start
        '''

        data = []
        for args in self.config.iter_nodes(level=-1):
            tmin = self.t(begin, args)
            tmax = self.t(end, args)
            x = self.config.get_distance(args)
            data.append((x, tmin, tmax))

        xs, tmins, tmaxs = num.array(data, dtype=num.float).T

        i = num.nanargmin(tmins)
        tminmin = tmins[i]
        x_tminmin = xs[i]
        dx = (xs - x_tminmin)
        dx = num.where(dx != 0.0, dx, num.nan)
        s = (tmins - tminmin) / dx
        sred = num.min(num.abs(s[num.isfinite(s)]))

        deltax = self.config.distance_delta

        if snap_vred:
            tdif = sred*deltax
            tdif2 = self.config.deltat * math.floor(tdif / self.config.deltat)
            sred = tdif2/self.config.distance_delta

        tmin_vred = tminmin - sred*x_tminmin
        if snap_vred:
            xe = x_tminmin - int(x_tminmin / deltax) * deltax
            tmin_vred = float(
                self.config.deltat *
                math.floor(tmin_vred / self.config.deltat) - xe * sred)

        tlenmax_vred = num.nanmax(tmax - (tmin_vred + sred*x))
        if sred != 0.0:
            vred = 1.0/sred
        else:
            vred = 0.0

        return dict(
            tmin=tminmin,
            tmax=num.nanmax(tmaxs),
            tmin_vred=tmin_vred,
            tlenmax_vred=tlenmax_vred,
            vred=vred)
Example #24
0
def _energyBinning(ws, algorithmLogging):
    """Create common (but nonequidistant) binning for a DeltaE workspace."""
    xs = ws.extractX()
    minXIndex = numpy.nanargmin(xs[:, 0])
    # TODO Fix logging.
    dx = BinWidthAtX(InputWorkspace=ws,
                     X=0.0,
                     EnableLogging=algorithmLogging)
    lastX = numpy.max(xs[:, -1])
    binCount = ws.blocksize()
    borders = list()
    templateXs = xs[minXIndex, :]
    currentX = numpy.nan
    for i in range(binCount):
        currentX = templateXs[i]
        borders.append(currentX)
        if currentX > 0:
            break
    i = 1
    equalBinStart = borders[-1]
    while currentX < lastX:
        currentX = equalBinStart + i * dx
        borders.append(currentX)
        i += 1
    borders[-1] = lastX
    return numpy.array(borders)
Example #25
0
    def train(self, alpha):
        """
        Finds the agglomerative clustering on the data alpha
        :param alpha: angles in radians
        :returns: data, cluster ids

        """
        assert len(alpha.shape) == 1, 'Clustering works only for 1d data'
        n = len(alpha)
        cid = np.arange(n, dtype=int)

        nu = n


        while nu > self.numclust:
            mu = np.asarray([descr.mean(alpha[cid == j]) if j in cid else np.Inf for j in range(n)])
            D = np.abs(descr.pairwise_cdiff(mu))
            idx = np.triu_indices(n,1)
            min = np.nanargmin(D[idx])
            cid[cid == cid[idx[0][min]]] = cid[idx[1][min]]
            nu -= 1


        cid2 = np.empty_like(cid)
        for i,j in enumerate(np.unique(cid)):
            cid2[cid == j] = i
        ucid = np.unique(cid2)
        self.centroids = np.asarray([descr.mean(alpha[cid2 == i]) for i in ucid])
        self.cluster_ids = ucid
        self.r = np.asarray([descr.resultant_vector_length(alpha[cid2 == i]) for i in ucid])

        return alpha, cid2
Example #26
0
def gridsearch(method, gs_name="", njobs=-2, batchsize=3, **params):
    if gs_name != "":
        gs_name = "_" + gs_name
    fn = "data/{}/{}{}.pck".format(name, method.__name__, gs_name)
    if os.path.exists(fn):
        print "Already exists: {}{}".format(method.__name__, gs_name)
        load_result_file(fn)
        return
    param_names = params.keys()
    param_list = list(itertools.product(*[params[k] for k in param_names]))
    param_lengths = [len(params[k]) for k in param_names]
    k = []
    i = 0
    while i < len(param_list):
        j = min(i + batchsize, len(param_list)+1)
        par = [dict(zip(param_names, p)) for p in param_list[i:j]]
        k.append(delayed(run)(method, par))
        i = j

    print "Starting {} {}{}".format(name, method.__name__, gs_name)
    res1 = Parallel(n_jobs=njobs, verbose=11)(k)
    res = np.vstack(res1)
    for i,c in enumerate(criteria):
        j = np.nanargmin(res[:,i].flatten())
        print "best parameters for {} with value {}:".format(c, np.nanmin(res[:,i]))
        print zip(param_names, param_list[j])
    res = np.array(res).reshape(*(param_lengths + [len(criteria)]))
    if not os.path.exists("data/{name}".format(name=name)):
        os.makedirs("data/{name}".format(name=name))
    with open(fn, "w") as f:
        pickle.dump(dict(res=res, params=param_list, criteria=criteria,
                    param_names=param_names, **params), f)
    print "Finished {} {}{}".format(name, method.__name__, gs_name)
def align_start(x, y, bin_size = 500, verbose = False, window = 2000, search = 100000):
  """Find initial alignment via downsampled data"""
  
  # resample for coarse alignment
  xa = average(x, bin_size);
  ya = average(y, bin_size); 
  
  #align resampled   
  dd = distance(xa, ya) 
  min_id = np.argmin(dd);

  #search full data
  id_search = bin_size * np.array(min_id + np.array([-2, 2]), dtype = int);
  dd2 = distance(x[:window+search], y[:window], search = id_search)
  start_id = np.nanargmin(dd2);
  
  if verbose:
    plt.figure(2); plt.clf();
    plt.subplot(1,3,1);
    plt.plot(dd)
    plt.scatter([min_id], [dd[min_id]], s = 50, c = 'r');
    plt.title('cooarse');
    plt.subplot(1,3,2);
    plt.plot(dd2)
    plt.scatter([start_id], [dd2[start_id]], s = 50, c = 'r');
    plt.title('fine');
    plt.subplot(1,3,3);
    plt.plot(x[start_id:start_id+window]);
    plt.plot(y[:window])
  
  return start_id;
Example #28
0
    def log_performance(self):
        '''
        Record model performance so far, based on validation loss.
        '''
        handle = open("checkpoints/%s/summary" % self.args.run_string, "w")

        for epoch in range(len(self.val_loss)):
            handle.write("Checkpoint %d | val loss: %.5f bleu %.2f\n"
                         % (epoch+1, self.val_loss[epoch],
                            self.val_metric[epoch]))

        logger.info("---")  # break up the presentation for clarity

        # BLEU is the quickest indicator of performance for our task
        # but loss is our objective function
        best_bleu = np.nanargmax(self.val_metric)
        best_loss = np.nanargmin(self.val_loss)
        logger.info("Best Metric: %d | val loss %.5f score %.2f",
                    best_bleu+1, self.val_loss[best_bleu],
                    self.val_metric[best_bleu])
        handle.write("Best Metric: %d | val loss %.5f score %.2f\n"
                     % (best_bleu+1, self.val_loss[best_bleu],
                        self.val_metric[best_bleu]))
        logger.info("Best loss: %d | val loss %.5f score %.2f",
                    best_loss+1, self.val_loss[best_loss],
                    self.val_metric[best_loss])
        handle.write("Best loss: %d | val loss %.5f score %.2f\n"
                     % (best_loss+1, self.val_loss[best_loss],
                        self.val_metric[best_loss]))
        logger.info("Early stopping marker: wait/patience: %d/%d\n",
                    self.wait, self.patience)
        handle.write("Early stopping marker: wait/patience: %d/%d\n" %
                     (self.wait, self.patience))
        handle.close()
Example #29
0
    def sample_responses(self, n=1000, condition=None, remove_negative_finishing_times=True):
        
        if condition is None:
            condition = np.arange(self.n_conditions)

        condition = np.repeat(condition, n)

        n = condition.shape[0]

        finishing_times = np.zeros((n, self.n_accumulators))

        for i, accumulator in enumerate(self.accumulators):
            _, finishing_times[:, i] = accumulator.sample_finishing_times(condition=condition)

        if remove_negative_finishing_times:
            finishing_times[finishing_times < 0] = np.nan
            
        rts = np.nanmin(finishing_times, 1)

        responses = np.nanargmin(finishing_times, 1)
        
        mapped_responses = np.ones_like(responses) * np.nan
        mapped_responses[~np.isnan(responses)] = self.accumulator2response[responses[~np.isnan(responses)]]


        return condition, mapped_responses, rts
Example #30
0
    def early_stop_decision(self, epoch, val_metric, val_loss):
        '''
	Stop training if validation loss has stopped decreasing and
	validation BLEU score has not increased for --patience epochs.

        WARNING: quits with sys.exit(0).

	TODO: this doesn't yet support early stopping based on TER
        '''

	if val_loss < self.best_val_loss:
	    self.wait = 0
        elif val_metric > self.best_val_metric or self.args.no_early_stopping:
            self.wait = 0
        else:
            self.wait += 1
            if self.wait >= self.patience:
                # we have exceeded patience
                if val_loss > self.best_val_loss:
                    # and loss is no longer decreasing
                    logger.info("Epoch %d: early stopping", epoch)
                    handle = open("checkpoints/%s/summary"
                                  % self.args.run_string, "a")
                    handle.write("Early stopping because patience exceeded\n")
                    best_bleu = np.nanargmax(self.val_metric)
                    best_loss = np.nanargmin(self.val_loss)
                    logger.info("Best Metric: %d | val loss %.5f score %.2f",
                                best_bleu+1, self.val_loss[best_bleu],
                                self.val_metric[best_bleu])
                    logger.info("Best loss: %d | val loss %.5f score %.2f",
                                best_loss+1, self.val_loss[best_loss],
                                self.val_metric[best_loss])
                    handle.close()
                    sys.exit(0)
Example #31
0
            temp = a2
            a2 = a1
            a1 = temp
            a1 -= (a2 - temp)
            a2 += (a2 - temp)
        else:
            temp = a1
            a1 -= (a2 - temp)
            a2 += (a2 - temp)

        print("step1a, a1,a2=", a1, a2)
        aRange = np.linspace(a1, a2, zoomAccuracy)
        for n in range(zoomAccuracy):
            Deviation[n] = Dev(x, y, dy, aRange[n], b)
        #Shuffle (tranlate)
        while (np.nanargmin(Deviation) == 0):
            for n in range(zoomAccuracy):
                Deviation[n] = Dev(x, y, dy, aRange[n], b)
            temp = a1
            a1 -= (a2 - temp)
            a2 -= (a2 - temp)
            if (a1 == a2): break
            try:
                print("for a, index of min =", np.nanargmin(Deviation),
                      ", just shuffled")
            except ValueError:
                pass
            aRange = np.linspace(
                a1, a2, zoomAccuracy
            )  #if the Deviation(0) is still min, then the loop will restart
def test_benchmark_offline(classify, test_set_x, batch_size):

    strides = (2, 5, 8)
    vid_root = "../data/YT_seg/"
    gt_counts = pickle.load(open("vidGtData.p", "rb"))

    gt = numpy.tile(gt_counts, (len(strides), 1))
    gt = gt.T
    gt1 = gt[:, 1]
    tests_num = gt_counts.shape[0]
    countArr = numpy.zeros(shape=(tests_num, len(strides)))
    entropy = numpy.zeros(shape=(tests_num, len(strides)))
    num_entropy = numpy.zeros(shape=(tests_num, len(strides)))

    currStride = -1
    for nStride in strides:
        currStride += 1

        for nTestSet in range(tests_num):

            print("stride: %i, vid: %i" % (nStride, nTestSet))
            fileName = vid_root + "YT_seg_" + str(nTestSet) + ".avi"
            mydatasets = load_next_test_data_simple_roi(fileName, nStride)

            ns_test_set_x, valid_ds = mydatasets
            if valid_ds == 0:  # file not axists
                continue

            test_set_x.set_value(ns_test_set_x, borrow=True)
            n_samples = ns_test_set_x.shape[0]

            out_list = [classify(i) for i in range(n_samples)]

            frame_counter = 0
            rep_counter = 0
            curr_entropy = 0
            ent_cnt = 0

            for batch_num in range(len(out_list)):

                output_label_batch, pYgivenX = out_list[batch_num]

                # Removed index in following line
                output_label = (output_label_batch[0] + 3
                                )  # moving from label to cycle length
                pYgivenX[pYgivenX == 0] = numpy.float32(
                    1e-30)  # hack to output valid entropy

                # calc entropy
                curr_entropy = curr_entropy - (pYgivenX *
                                               numpy.log(pYgivenX)).sum()
                ent_cnt = ent_cnt + 1
                # integrate counting
                if batch_num == 0:
                    rep_counter = 20 / (output_label)
                    frame_counter = 20 % (output_label)
                else:
                    frame_counter += 1
                    if frame_counter >= output_label:
                        rep_counter += 1
                        frame_counter = 0

            countArr[nTestSet, currStride] = rep_counter
            entropy[nTestSet, currStride] = curr_entropy
            num_entropy[nTestSet, currStride] = ent_cnt

    absdiff_o = abs(countArr - gt)
    min_err_cnt_o = absdiff_o.min(axis=1)
    min_err_perc_o = min_err_cnt_o / gt[:, 1]
    err_perc_o = numpy.average(min_err_perc_o) * 100
    print("alpha = 1: precentage error:    %.2f%%" % (err_perc_o))

    print("---------")
    med = numpy.median(countArr, axis=1)
    medif = numpy.average(abs(med - gt1) / gt1) * 100
    print("median stride: precentage error:    %.2f%%" % medif)

    xx = entropy / num_entropy
    chosen_stride = numpy.nanargmin(xx, axis=1)
    m = numpy.arange(chosen_stride.shape[0]) * len(strides)
    m = m + chosen_stride
    flt = countArr.flatten()
    ent_chosen_cnt = flt[m]

    entdif = numpy.average(abs(ent_chosen_cnt - gt1) / gt1) * 100
    print("enropy stride: precentage error:    %.2f%%" % entdif)

    print("offline entropy counting done")
Example #33
0
    def run(self, save_sims=''):
        """
        Runs evolutionary algorithm

        Returns
        -------
        top_params : list
            List of the top parameters from an individual EA.
        best_error : list
            List of the best errors from an individual EA run.
        """

        top_params = np.zeros(
            (self.number_of_runs, self.number_of_generations + 1,
             len(self.minimums)))
        best_error = np.zeros(
            (self.number_of_runs, self.number_of_generations + 1))

        def scorefxn_helper(ea_individual):
            return self.scorefxn(ea_individual, convert=True),

        for i in range(self.number_of_runs):
            # TYPE
            # Create minimizing fitness class w/ single objective:
            creator.create('FitnessMin', base.Fitness, weights=(-1.0, ))
            # Create individual class:
            creator.create('Individual', list, fitness=creator.FitnessMin)

            # TOOLBOX
            toolbox = base.Toolbox()
            # Register function to use initRepeat to fill individual w/ n calls to rand_num:
            toolbox.register('individual',
                             tools.initRepeat,
                             creator.Individual,
                             np.random.random,
                             n=len(self.minimums))
            # Register function to use initRepeat to fill population with individuals:
            toolbox.register('population', tools.initRepeat, list,
                             toolbox.individual)

            # GENETIC OPERATORS:
            # Register evaluate fxn = evaluation function, individual to evaluate given later
            toolbox.register('evaluate', scorefxn_helper)
            # Register mate fxn = two points crossover function
            toolbox.register('mate', tools.cxTwoPoint)
            # Register mutate by swapping two points of the individual:
            toolbox.register('mutate',
                             tools.mutPolynomialBounded,
                             eta=0.1,
                             low=0.0,
                             up=1.0,
                             indpb=0.2)
            # Register select = size of tournament set to 3
            toolbox.register('select', tools.selTournament, tournsize=3)

            # EVOLUTION!
            pop = toolbox.population(n=self.number_of_individuals)
            hof = tools.HallOfFame(1)

            stats = tools.Statistics(key=lambda ind: [ind.fitness.values, ind])
            stats.register('all', np.copy)

            # using built in eaSimple algo
            pop, logbook = algorithms.eaSimple(pop,
                                               toolbox,
                                               cxpb=self.crossover_rate,
                                               mutpb=self.mutation_rate,
                                               ngen=self.number_of_generations,
                                               stats=stats,
                                               halloffame=hof,
                                               verbose=False)

            # Save best scores and individuals in population
            best_score = []
            best_ind = []
            for a in range(len(logbook)):
                scores = [
                    logbook[a]['all'][b][0][0]
                    for b in range(len(logbook[a]['all']))
                ]
                best_score.append(np.nanmin(scores))

                # logbook is of type 'deap.creator.Individual' and must be loaded later
                # don't want to have to load it to view data everytime, thus numpy
                ind_np = np.asarray(logbook[a]['all'][np.nanargmin(scores)][1])
                ind_np_conv = self.convert_individual(ind_np)
                best_ind.append(ind_np_conv)

            # print('Best individual is:\n %s\nwith fitness: %s' %(arr_best_ind[-1],arr_best_score[-1]))

            top_params[i] = best_ind
            best_error[i] = best_score

            if i / self.number_of_runs * 100 % 10 == 0:
                print(str((i / self.number_of_runs) * 100) + '% complete.')

            if save_sims:
                counter = 0
                filename = get_filename(save_sims, counter)
                while os.path.isfile(filename) == True:
                    counter += 1
                    filename = get_filename(save_sims, counter)

                with h5py.File(filename, "w") as f:
                    tparam = f.create_dataset("top_params", data=top_params)
                    berror = f.create_dataset("best_error", data=best_error)
        return top_params, best_error
Example #34
0
    def closest(cls, query_results, lat, lon, heading, prev_way=None):
        results, tree, real_nodes, node_to_way, location_info = query_results

        cur_pos = geodetic2ecef((lat, lon, 0))
        nodes = tree.query_ball_point(cur_pos, 500)

        # If no nodes within 500m, choose closest one
        if not nodes:
            nodes = [tree.query(cur_pos)[1]]

        ways = []
        for n in nodes:
            real_node = real_nodes[n]
            ways += node_to_way[real_node.id]
        ways = set(ways)

        closest_way = None
        best_score = None
        for way in ways:
            way = Way(way, query_results)
            points = way.points_in_car_frame(lat, lon, heading)

            on_way = way.on_way(lat, lon, heading, points)
            if not on_way:
                continue

            # Create mask of points in front and behind
            x = points[:, 0]
            y = points[:, 1]
            angles = np.arctan2(y, x)
            front = np.logical_and((-np.pi / 2) < angles, angles < (np.pi / 2))
            behind = np.logical_not(front)

            dists = np.linalg.norm(points, axis=1)

            # Get closest point behind the car
            dists_behind = np.copy(dists)
            dists_behind[front] = np.NaN
            closest_behind = points[np.nanargmin(dists_behind)]

            # Get closest point in front of the car
            dists_front = np.copy(dists)
            dists_front[behind] = np.NaN
            closest_front = points[np.nanargmin(dists_front)]

            # fit line: y = a*x + b
            x1, y1, _ = closest_behind
            x2, y2, _ = closest_front
            a = (y2 - y1) / max((x2 - x1), 1e-5)
            b = y1 - a * x1

            # With a factor of 60 a 20m offset causes the same error as a 20 degree heading error
            # (A 20 degree heading offset results in an a of about 1/3)
            score = abs(a) * 60. + abs(b)

            # Prefer same type of road
            if prev_way is not None:
                if way.way.tags.get('highway', '') == prev_way.way.tags.get(
                        'highway', ''):
                    score *= 0.5

            if closest_way is None or score < best_score:
                closest_way = way
                best_score = score

        return closest_way
        def asyncBackTrack(**kwargs):
            refDatas = kwargs['refDatas']
            inpDatas = kwargs['inpDatas']
            matchingCost1 = kwargs['matchingCost1']
            matchingCost3 = kwargs['matchingCost3']
            totalMatchingCosts = kwargs['totalMatchingCosts']
            baseArgs = kwargs['baseArgs']

            #inputFinFrameBackTracked, epsilonFinFrameBackTracked = kwargs['argsFinFrameBackTracked']
            inputFinFrameBackTracked = np.nanargmin(totalMatchingCosts)
            epsilon1FinFrameBackTracked, epsilon3FinFrameBackTracked = \
                np.nanargmin(matchingCost1[matchingCost1.shape[0] - 1, inputFinFrameBackTracked]), \
                np.nanargmin(matchingCost3[matchingCost3.shape[0] - 1, inputFinFrameBackTracked])

            correspondentPoints1, correspondentPoints2, correspondentPoints3 = [], [], []
            r, i, epsilon1, epsilon3 = matchingCost1.shape[0] - 1, inputFinFrameBackTracked, \
                                       epsilon1FinFrameBackTracked - limits, epsilon3FinFrameBackTracked - limits

            correspondentPoints2.append([r, i])
            correspondentPoints1.append([r, i + epsilon1])
            correspondentPoints3.append([r, i + epsilon3])
            """
            epsilon\i| i     i-1   i-2(tmp=0,1,2)
            -------------------------
                -2    | e+c   e+c   e+c
                -1    | e+c-1 e+c-1 e+c
                0     | e+c-2 e+c-1 e+c
                1     | e+c-2 e+c-1 e+c
                2     | e+c-2 e+c-1 e+c
            (epsilon + limits=0,...,4)
            """

            forNewEpsilon = [[0, 0, 0], [-1, -1, 0], [-2, -1, 0], [-2, -1, 0],
                             [-2, -1, 0]]

            def _mcosts(iNext, epsilon, matchingCost):
                if iNext == 0:
                    return matchingCost[r - 1, i,
                                        max(epsilon, 0):epsilon + limits + 1]
                elif iNext == 1:
                    return matchingCost[r - 1, i - 1,
                                        max(epsilon + 1, 0):epsilon + limits +
                                        2]
                else:
                    return matchingCost[r - 1, i - 2,
                                        max(epsilon + 2, 0):epsilon + limits +
                                        3]

            while r > 0:
                tmp = abs(baseArgs[r, i])

                c1_ = np.argmin(_mcosts(tmp, epsilon1, matchingCost1))
                c3_ = np.argmin(_mcosts(tmp, epsilon3, matchingCost3))

                r = r - 1
                i = i - tmp
                epsilon1 = epsilon1 + c1_[tmp] + forNewEpsilon[epsilon1 +
                                                               limits][tmp]
                epsilon3 = epsilon3 + c3_[tmp] + forNewEpsilon[epsilon3 +
                                                               limits][tmp]
                correspondentPoints2.insert(0, [r, i])
                correspondentPoints1.insert(0, [r, i + epsilon1])
                correspondentPoints3.insert(0, [r, i + epsilon3])

            return correspondentPoints1, correspondentPoints2
Example #36
0
def waveReleasePointWindsContour(bam,
                                 traj,
                                 ref_loc,
                                 points,
                                 div=37,
                                 mode='ballistic'):
    setup = bam.setup
    atmos = bam.atmos
    steps = 90
    alpha = np.linspace(0, 360 * ((steps - 1) / steps), steps)
    alpha = np.radians(alpha)
    beta = np.linspace(0, 90 * ((steps - 1) / steps), steps)
    beta = np.radians(beta)
    theta = setup.trajectory.azimuth.rad
    phi = setup.trajectory.zenith.rad
    tol = 25  #deg
    # tol_fact = np.radians(np.linspace(-tol, tol, 10))
    WIND = True
    u = traj.getTrajVect()

    v_list = []
    for i in range(steps):
        for j in range(steps):

            v = np.array([np.sin(alpha[i])*np.sin(beta[j]),\
                        np.cos(alpha[i])*np.sin(beta[j]),\
                        -np.cos(beta[j])])

            if np.abs(90 - np.degrees(np.arccos(np.dot(u, v)))) <= tol:

                v_list.append([alpha[i], beta[j]])

    v_list = np.array(v_list)

    results = []

    # temp hotfix
    if mode == 'ballistic_old':

        grid_space = 25

        p1 = Position(43.8, 13.1, 0)
        p2 = Position(47.8, 17.1, 0)

        p1.pos_loc(ref_loc)
        p2.pos_loc(ref_loc)

        xs = np.linspace(p1.x, p2.x, grid_space)
        ys = np.linspace(p1.y, p2.y, grid_space)

        n_steps = grid_space**2 * len(points)
        for xnum, xx in enumerate(xs):
            for ynum, yy in enumerate(ys):

                angle_list = []
                time_list = []
                D = [xx, yy, 0]

                for pnum, pp in enumerate(points):

                    step = pnum + ynum * len(points) + xnum * grid_space * len(
                        points)
                    loadingBar("Contour Calculation", step, n_steps)

                    P = Position(pp[0], pp[1], pp[2])

                    P.pos_loc(ref_loc)

                    S = P.xyz

                    R = Position(0, 0, 0)
                    R.x = D[0]
                    R.y = D[1]
                    R.z = D[2]
                    R.pos_geo(ref_loc)

                    lats = [P.lat, R.lat]
                    lons = [P.lon, R.lon]
                    elev = [P.elev, R.elev]

                    z_profile, _ = atmos.getSounding(
                        lats,
                        lons,
                        elev,
                        ref_time=setup.fireball_datetime,
                        spline=100)

                    res = cyscan(np.array(S),
                                 np.array(D),
                                 z_profile,
                                 wind=True,
                                 h_tol=330,
                                 v_tol=3000,
                                 debug=False)

                    alpha = np.radians(res[1])
                    beta = np.radians(180 - res[2])

                    res_vector = np.array([np.sin(alpha)*np.sin(beta),\
                                np.cos(alpha)*np.sin(beta),\
                                -np.cos(beta)])

                    angle_list.append(
                        np.abs(90 - np.degrees(
                            np.arccos(
                                np.dot(
                                    u / np.sqrt(u.dot(u)), res_vector /
                                    np.sqrt(res_vector.dot(res_vector)))))))
                    time_list.append(res[0])

                if np.nanmin(angle_list) <= tol:

                    best_angle_index = np.nanargmin(angle_list)

                    best_time = time_list[best_angle_index]

                    if not np.isnan(best_time):
                        res = [xx, yy, 0, best_time]

                        results.append(res)

            # u = np.array([bam.setup.trajectory.vector.x,
            #               bam.setup.trajectory.vector.y,
            #               bam.setup.trajectory.vector.z])

            # angle_off = []
            # X = []
            # for i in range(len(bam.setup.fragmentation_point)):
            #     az = stn.times.fragmentation[i][0][1]
            #     tf = stn.times.fragmentation[i][0][2]

            #     az = np.radians(az)
            #     tf = np.radians(180 - tf)
            #     v = np.array([np.sin(az)*np.sin(tf), np.cos(az)*np.sin(tf), -np.cos(tf)])

            #     angle_off.append(np.degrees(np.arccos(np.dot(u/np.sqrt(u.dot(u)), v/np.sqrt(v.dot(v))))))
            #     X.append(bam.setup.fragmentation_point[i].position.elev)
            # angle_off = np.array(angle_off)
            # try:
            #     best_indx = np.nanargmin(abs(angle_off - 90))

            # except ValueError:
            #     best_indx = None
            #     a.append(np.array([np.nan, np.nan, np.nan, np.nan]))
            #     for pert in perturbations:
            #         a.append(np.array([np.nan, np.nan, np.nan, np.nan]))
            #     stn.times.ballistic.append(a)
            #     continue

            # np.array([t_arrival, azimuth, takeoff, E[k, l]])

    elif mode == 'ballistic':
        n_steps = len(v_list) * len(points)
        WIND = True
        for pp, p in enumerate(points):

            for vv, v in enumerate(v_list):

                step = vv + pp * len(v_list)
                loadingBar("Contour Calculation", step, n_steps)

                # v[i] = np.array([np.sin(alpha[i])*np.sin(beta[i]),\
                #                  np.cos(alpha[i])*np.sin(beta[i]),\
                #                                 -np.cos(beta[i])])

                P = Position(p[0], p[1], p[2])
                S = Position(p[0], p[1], 0)

                P.pos_loc(ref_loc)

                pt = P.xyz
                # s = p + p[2]/np.cos(beta[i])*v[i]
                # S = Position(0, 0, 0)
                # P = Position(0, 0, 0)
                # S.x, S.y, S.z = s[0], s[1], s[2]
                # P.x, P.y, P.z = p[0], p[1], p[2]
                # S.pos_geo(ref_loc)
                # P.pos_geo(ref_loc)

                lats = [P.lat, S.lat]
                lons = [P.lon, S.lon]
                elev = [P.elev, S.elev]
                # z_profile, _ = supra.Supracenter.cyweatherInterp.getWeather(p, s, setup.weather_type, \
                #      ref_loc, copy.copy(sounding), convert=True)
                if WIND:
                    z_profile, _ = atmos.getSounding(
                        lats,
                        lons,
                        elev,
                        ref_time=setup.fireball_datetime,
                        spline=200)

                    res = anglescan(pt,
                                    np.degrees(v[0]),
                                    np.degrees(v[1]) + 90,
                                    z_profile,
                                    wind=True,
                                    debug=False)

                else:
                    # if no wind, just draw a straight line

                    vect = np.array([np.sin(v[0])*np.sin(v[1]),\
                            np.cos(v[0])*np.sin(v[1]),\
                            -np.cos(v[1])])

                    s = -pt[2] / vect[2]

                    ground_point = pt + s * vect

                    ground_time = s / 330

                    res = [
                        ground_point[0], ground_point[1], ground_point[2],
                        ground_time
                    ]

                # This is the limit in distance from the trajectory (hardcoded)
                if res[-1] <= 1000:
                    # if np.sqrt(res[0]**2 + res[1]**2) <= 150000:
                    results.append(res)

    else:
        # n_steps = len(tol_fact)*len(points)*steps

        beta = np.linspace(90 + 0.01, 180, steps)
        beta = np.radians(beta)
        p = points

        for ii, i in enumerate(range(steps)):
            for jj, j in enumerate(range(steps)):
                # print(np.degrees(beta[i]))
                step = jj + ii * steps
                loadingBar("Contour Calculation", step, n_steps)


                v[i*steps + j] = np.array([np.sin(alpha[i])*np.sin(beta[j]),\
                                 np.cos(alpha[i])*np.sin(beta[j]),\
                                                -np.cos(beta[j])])
                s = p + p[2] / np.cos(beta[j]) * v[i * steps + j]

                S = Position(0, 0, 0)
                P = Position(0, 0, 0)
                S.x, S.y, S.z = s[0], s[1], s[2]
                P.x, P.y, P.z = p[0], p[1], p[2]
                S.pos_geo(ref_loc)
                P.pos_geo(ref_loc)

                lats = [P.lat, S.lat]
                lons = [P.lon, S.lon]
                elev = [P.elev, S.elev]

                z_profile, _ = atmos.getSounding(
                    lats,
                    lons,
                    elev,
                    ref_time=setup.fireball_datetime,
                    spline=100)
                res = anglescan(p,
                                np.degrees(alpha[i]),
                                np.degrees(beta[j]),
                                z_profile,
                                wind=True,
                                debug=False)

                # if np.sqrt(res[0]**2 + res[1]**2) <= 200000:
                results.append(res)

    return results
        def asyncBackTrack(**kwargs):
            refDatas = kwargs['refDatas']
            inpDatas = kwargs['inpDatas']
            matchingCost = kwargs['matchingCost']
            #inputFinFrameBackTracked, epsilonFinFrameBackTracked = kwargs['argsFinFrameBackTracked']
            inputFinFrameBackTracked, epsilonFinFrameBackTracked = np.unravel_index(
                np.nanargmin(matchingCost[matchingCost.shape[0] - 1]),
                matchingCost[matchingCost.shape[0] - 1].shape)

            correspondentPoints1, correspondentPoints2 = [], []
            r, i, epsilon = matchingCost.shape[
                0] - 1, inputFinFrameBackTracked, epsilonFinFrameBackTracked - limits
            correspondentPoints1.append([r, i])
            correspondentPoints2.append([r, i + epsilon])
            """
            epsilon\i| i     i-1   i-2(tmp=0,1,2)
            -------------------------
                -2    | e+c   e+c   e+c
                -1    | e+c-1 e+c-1 e+c
                0     | e+c-2 e+c-1 e+c
                1     | e+c-2 e+c-1 e+c
                2     | e+c-2 e+c-1 e+c
            (epsilon + limits=0,...,4)
            """

            forNewEpsilon = [[0, 0, 0], [-1, -1, 0], [-2, -1, 0], [-2, -1, 0],
                             [-2, -1, 0]]

            while r > 0:
                if i > 1:
                    mcosts = [
                        matchingCost[r - 1, i,
                                     max(epsilon, 0):epsilon + limits + 1],
                        matchingCost[r - 1, i - 1,
                                     max(epsilon + 1, 0):epsilon + limits + 2],
                        matchingCost[r - 1, i - 2,
                                     max(epsilon + 2, 0):epsilon + limits + 3]
                    ]
                    c_, tmp = [], []
                    for ind, mcost in enumerate(mcosts):
                        c_.append(np.argmin(mcost))
                        tmp.append(mcost[c_[ind]])

                    tmp = np.argmin(tmp)

                    r = r - 1
                    i = i - tmp
                    epsilon = epsilon + c_[tmp] + forNewEpsilon[epsilon +
                                                                limits][tmp]
                    correspondentPoints1.insert(0, [r, i])
                    correspondentPoints2.insert(0, [r, i + epsilon])
                    """
                    # i -> i
                    if tmp == 0:
                        r = r - 1
                        epsilon = epsilon + c_[tmp] + forNewEpsilon[epsilon + limits][tmp]
                        correspondentPoints1.insert(0, [r, i])
                        correspondentPoints2.insert(0, [r, i + epsilon])

                    # i -> i - 1
                    elif tmp == 1:
                        r = r - 1
                        i = i - 1
                        epsilon = epsilon + c_[tmp] + forNewEpsilon[epsilon + limits][tmp]
                        correspondentPoints1.insert(0, [r, i])
                        correspondentPoints2.insert(0, [r, i + epsilon])
                    else:  # i -> i - 2
                        r = r - 1
                        i = i - 2
                        epsilon = epsilon + c_[tmp] + forNewEpsilon[epsilon + limits][tmp]
                        correspondentPoints1.insert(0, [r, i])
                        correspondentPoints2.insert(0, [r, i + epsilon])
                    """
                elif i == 1:
                    mcosts = [
                        matchingCost[r - 1, 1,
                                     max(epsilon, 0):epsilon + limits + 1],
                        matchingCost[r - 1, 0,
                                     max(epsilon + 1, 0):epsilon + limits + 2]
                    ]

                    c_, tmp = [], []
                    for ind, mcost in enumerate(mcosts):
                        c_.append(np.argmin(mcost))
                        tmp.append(mcost[c_[ind]])

                    tmp = np.argmin(tmp)

                    r = r - 1
                    i = i - tmp
                    epsilon = epsilon + c_[tmp] + forNewEpsilon[epsilon +
                                                                limits][tmp]
                    correspondentPoints1.insert(0, [r, i])
                    correspondentPoints2.insert(0, [r, i + epsilon])

                else:  # i == 0
                    c = np.argmin(matchingCost[r - 1, 0,
                                               max(epsilon, 0):epsilon +
                                               limits + 1])

                    r = r - 1
                    #i = i
                    epsilon = epsilon + c + forNewEpsilon[epsilon + limits][0]
                    correspondentPoints1.insert(0, [r, i])
                    correspondentPoints2.insert(0, [r, i + epsilon])

            return correspondentPoints1, correspondentPoints2
Example #38
0
import pandas as pd
import numpy as np

if __name__ == '__main__':
    # First, read football.dat into a pandas dataframe
    # using any contiguous block of whitespace as the delimiter between columns.
    # Upon observing the data, I see that there is a column of hyphens between the 'for' and 'against'
    # columns, and this column has no header.
    # To account for this, I set header=0 to discard the top row from the file,
    # thus allowing me to use my own set of column headers.
    # I specify the headers in the 'names' parameter.
    table = pd.read_table('football.dat', delim_whitespace=True, header=0, \
                names=['number', 'name', 'p', 'w', 'l', 'd', 'for', 'dash', 'against', 'pts'])
    # convert the 'for' and 'against' series into numpy float arrays
    pts_agnst, pts_for = np.float_(table['against']), np.float_(table['for'])
    # create a numpy float array that contains the absolute values of the differences between 'against' and 'for'
    spread = abs(pts_agnst - pts_for)
    # Now, get the array index of the smallest spread value that is not == nan
    # Ignoring nan is necessary to account for the row of hyphens.  Another option would have been to
    # skip this row in pd.read_table, but the approach I have used is more general.
    # numpy.nanargmin does exactly this, finding the index of a float array for the minimum value in
    # that array which is not nan
    answer_idx = np.nanargmin(spread)
    # Print the value in the name column for the row with the smallest spread
    print(table['name'][answer_idx])
Example #39
0
def SSIdatStaDiag(data,
                  fs,
                  br,
                  ordmax=None,
                  lim=(0.01, 0.05, 0.02, 0.1),
                  method='1'):
    '''This function return the Stabilization Diagram (Plot) for the given
    data calculated according the data driven SSI algorithm.'''

    ndat = data.shape[0]  # Number of data points
    nch = data.shape[1]  # Number of channel

    # If the maximum order is not given (default) it is set as the maximum
    # allowable model order which is: number of block rows * number of channels
    if ordmax == None:
        ordmax = br * nch

    freq_max = fs / 2  # Nyquist Frequency

    # unpack the limits used for the construction of the Stab Diag
    _lim_f, _lim_s, _lim_ms, _lim_s1 = lim[0], lim[1], lim[2], lim[3]

    Yy = np.array(data.transpose())  # Matrice dati trasposta

    j = ndat - 2 * br + 1
    # DIMENSIONE MATRICE DI HANKEL

    H = np.zeros((nch * 2 * br, j))  # PREALLOCA LA MATRICE DI HANKEL
    for _k in range(0, 2 * br):
        H[_k *
          nch:((_k + 1) *
               nch), :] = (1 / j**0.5) * Yy[:, _k:_k +
                                            j]  # CALCOLO MATRICE DI HANKEL

    # FATTORIZZAZIONE LQ DELLA MATRICE DI HANKEL
    Q, L = np.linalg.qr(H.T)
    L = L.T
    Q = Q.T

    _a = nch * br
    _b = nch

    L21 = L[_a:_a + _b, :_a]
    L22 = L[_a:_a + _b, _a:_a + _b]
    L31 = L[_a + _b:, :_a]
    L32 = L[_a + _b:, _a:_a + _b]

    Q1 = Q[:_a, :]
    Q2 = Q[_a:_a + _b, :]

    P_i = np.vstack((L21, L31)) @ Q1  # Projection Matrix P_i
    P_im1 = np.hstack((L31, L32)) @ np.vstack((Q1, Q2))  # Projection P_(i-1)
    Y_i = np.hstack((L21, L22)) @ np.vstack((Q1, Q2))  # Output sequence

    # SINGULAR VALUE DECOMPOSITION
    U1, S1, V1_t = np.linalg.svd(P_i, full_matrices=False)
    S1 = np.diag(S1)
    S1rad = np.sqrt(S1)

    # Ciclo per ordine del sistema crescente
    Fr = np.full((ordmax, ordmax + 1),
                 np.nan)  # inizializzo la matrice che conterrà le frequenze
    Fr_lab = np.full(
        (ordmax, ordmax + 1), np.nan
    )  # inizializzo la matrice che conterrà le labels per i poli(frequenze) da stampare nel diagramma di stabilizzazione
    Sm = np.full((ordmax, ordmax + 1),
                 np.nan)  # inizializzo la matrice che conterrà gli smorzamenti
    Ms = []  # inizializzo la matrice (3D) che conterrà le forme modali
    for z in range(0, int((ordmax) / 2 + 1)):
        Ms.append(np.zeros((nch, z * (2))))

    for _ind in range(0, ordmax + 1, 2):
        # Inizializzo le matrici che mi servono
        S11 = np.zeros((_ind, _ind))  # Inizializzo
        U11 = np.zeros((br * nch, _ind))  # Inizializzo
        V11 = np.zeros((_ind, br * nch))  # Inizializzo
        O_1 = np.zeros((br * nch - nch, _ind))  # Inizializzo
        O_2 = np.zeros((br * nch - nch, _ind))  # Inizializzo

        # Estrazione di sottomatrici per ordine crescente del sistema
        S11[:_ind, 0:_ind] = S1rad[
            0:_ind, 0:
            _ind]  # ESTRAZIONE DI UNA SOTTOMATRICE DEI SINGULAR VALUES DA ORDINE MIN A ORD MAX
        U11[:br * nch, 0:_ind] = U1[
            0:br * nch, 0:
            _ind]  # ESTRAZIONE DI UNA SOTTOMATRICE DEI LEFT SINGULAR VECTORS DA ORDINE MIN A ORD MAX
        V11[0:_ind, :br * nch] = V1_t[0:_ind, 0:br * nch]  #

        O = U11 @ S11  # Observability matrix
        S = np.linalg.pinv(O) @ P_i  # Kalman filter state sequence

        O_1[:, :] = O[:O.shape[0] - nch, :]
        O_2[:, :] = O[nch:, :]

        # STIMA DELLA MATRICE DINAMICA A TEMPO DISCRETO
        if method == '2':  # Method 2
            A = np.linalg.pinv(O_1) @ O_2
            C = O[:nch, :]
            # Ci sarebbero da calcolare le matrici G e R0

        else:  # METODO 1
            Sp1 = np.linalg.pinv(O_1) @ P_im1  # kalman state sequence S_(i+1)

            AC = np.vstack((Sp1, Y_i)) @ np.linalg.pinv(S)
            A = AC[:Sp1.shape[0]]
            C = AC[Sp1.shape[0]:]
            # Ci sarebbero da calcolare le matrici G e R0

        [_AuVal,
         _AuVett] = np.linalg.eig(A)  # CALCOLO AUTOVALORI ED AUTOVETTORI
        Lambda = (np.log(_AuVal)) * fs  # CALCOLO Lambda
        fr = abs(Lambda) / (2 * np.pi)  # CALCOLO FRQUENZE
        smorz = -((np.real(Lambda)) / (abs(Lambda)))  # CALCOLO SMORZAMENTO

        # calcolo la matrice C per definizione dei modi
        # le deformate modali M in forma complessa sono calcolate attraverso
        # l'espressione M=CL dove L è la matrice le cui colonne sono gli autovettori
        # di A (_AuVett)

        Mcomp = C @ _AuVett
        Mreal = np.real(C @ _AuVett)

        Fr[:len(fr), _ind] = fr  # SALVA LE FREQUENZE
        Sm[:len(fr), _ind] = smorz  # SALVA gli smorzamenti
        Ms[int(_ind / 2)] = Mcomp  # SALVA le forme modali
        # =============================================================================
        # Controllo stabilità dei poli
        for idx, (_freq, _smor) in enumerate(zip(fr, smorz)):
            if _ind == 0 or _ind == 2:  # alla prima iterazione/primo ordine sono tutti nuovi poli
                Fr_lab[:len(
                    fr
                ), _ind] = 0  # 0 è l'etichetta per i nuovi poli e poli instabili

            elif np.isnan(_freq) == True:
                _freq = 0
                Fr[idx, _ind] = 0

            else:
                # Trovo l'indice del polo che minimizza la differenza alla iterazione/ordine n-1
                ind2 = np.nanargmin(
                    abs(_freq - Fr[:, (_ind) - 2]) -
                    min(abs(_freq - Fr[:, (_ind) - 2])))

                Fi_n = Mcomp[:,
                             idx]  # forma modale all'iterazione = _iteraz (attuale)
                Fi_nmeno1 = Ms[int(
                    _ind / 2 - 1
                )][:,
                   ind2]  # forma modale all'iterazione = _iteraz-1 (precedente)

                # aMAC = np.abs(Fi_n@Fi_nmeno1)**2 / ((Fi_n@Fi_n)*(Fi_nmeno1@Fi_nmeno1)) # autoMAC
                aMAC = MaC(Fi_n.real, Fi_nmeno1.real)

                if min(abs(_freq - Fr[:, (_ind) - 2]) /
                       _freq) < _lim_f:  # CONDIZIONE 1 SULLA FREQUENZA

                    if (_smor - Sm[ind2, (_ind) - 2]
                        ) / _smor < _lim_s:  # CONDIZIONE 2 SULLO SMORZAMENTO
                        if 1 - aMAC < _lim_ms:  # CONDIZIONE 3 SULLE FORME MODALI
                            Fr_lab[
                                idx,
                                _ind] = 4  # Se il polo è stabile sia per smorzamento che per forma modale (viene classificato come stabile/verde)
                        else:
                            Fr_lab[
                                idx,
                                _ind] = 2  # Stabile per smorzamento ma non per forma modale

                    elif 1 - aMAC < _lim_ms:  # CONDIZIONE 3 SULLE FORME MODALI
                        Fr_lab[
                            idx,
                            _ind] = 3  # Stabile per forma modale ma non per smorzamento

                    else:
                        Fr_lab[idx, _ind] = 1  # Stabile solo per frequenza
                else:
                    Fr_lab[idx, _ind] = 0  # Nuovo polo o polo instabile

# =============================================================================
# PLOT DIAGRAMMA DI STABILIZZAZZIONE
# =============================================================================
    _x = Fr.flatten(order='f')
    _y = np.array([_i // len(Fr) for _i in range(len(_x))])
    _l = Fr_lab.flatten(order='f')
    _d = Sm.flatten(order='f')

    _df = pd.DataFrame(dict(Frequency=_x, Order=_y, Label=_l, Damp=_d))
    _df1 = _df.copy(
    )  # DataFrame che mi serve per plot diagramma stabilizzazione

    # =============================================================================
    # Qui creo un dataframe "ridotto" (senza nan) dove sono salvate: frequenze,
    # smorzamenti e indici della forma modale associata al polo (order, emme)
    df2 = _df.copy()
    df2 = df2.dropna()
    emme = []
    for effe, order in zip(df2.Frequency, df2.Order):
        emme.append(np.nanargmin(abs(effe - Fr[:, order])))  # trovo l'indice
    emme = np.array(emme)
    df2['Emme'] = emme
    df2 = df2.drop_duplicates()
    df2 = df2.drop(columns='Label')
    # =============================================================================

    _df1.Frequency = _df1.Frequency.where(
        _df.Damp < _lim_s1
    )  # qui rimuovo tutti i poli che hanno smorzamento maggiore di lim_s1
    _df1.Frequency = _df1.Frequency.where(
        _df.Damp >
        0)  # qui rimuovo tutti i poli che hanno smorzamento negativo (< 0)

    _colors = {
        0: 'Red',
        1: 'darkorange',
        2: 'gold',
        3: 'yellow',
        4: 'Green'
    }  # assegno i colori alle etichette dei poli

    fig1, ax1 = plt.subplots()
    ax1 = sns.scatterplot(_df1['Frequency'],
                          _df1['Order'],
                          hue=_df1['Label'],
                          palette=_colors)

    ax1.set_xlim(left=0, right=freq_max)
    ax1.set_ylim(bottom=0, top=ordmax)
    ax1.xaxis.set_major_locator(MultipleLocator(freq_max / 10))
    ax1.xaxis.set_major_formatter(FormatStrFormatter('%g'))
    ax1.xaxis.set_minor_locator(MultipleLocator(freq_max / 100))
    ax1.set_title('''{0} - shift: {1}'''.format('Stabilization Diagram', br))
    ax1.set_xlabel('Frequency [Hz]')
    mplcursors.cursor()
    plt.show()

    Results = {}
    Results['Data'] = {'Data': data}
    Results['Data']['Samp. Freq.'] = fs
    Results['All Poles'] = _df1
    Results['Reduced Poles'] = df2
    Results['Modes'] = Ms

    return fig1, Results
Example #40
0
def SSIcovStaDiag(data,
                  fs,
                  br,
                  ordmax=None,
                  lim=(0.01, 0.05, 0.02, 0.1),
                  method='1'):
    ndat = data.shape[0]  #NUMERO DI DATI CAMPIONATI
    nch = data.shape[1]  #NUMERO DI CANALI ACQUISITI
    if ordmax == None:
        ordmax = br * nch
    freq_max = fs / 2  # Frequenza di Nyquist

    _lim_f, _lim_s, _lim_ms, _lim_s1 = lim[0], lim[1], lim[2], lim[3]

    Yy = np.array(data.transpose())
    # =============================================================================
    # METODO LIBRO (Rainieri & Fabbrocino)
    # =============================================================================
    # Mi calcolo tutti i R[i] (con i da 0 a 2*br)
    R_is = np.array([
        1 / (ndat - _s) * (Yy[:, :ndat - _s] @ Yy[:, _s:].T)
        for _s in range(br * 2 + 1)
    ])
    # Mi costruisco la matrice di Toepliz
    Tb = np.vstack([
        np.hstack([R_is[_o, :, :] for _o in range(br + _l, _l, -1)])
        for _l in range(br)
    ])

    # One-lag shifted matrice di Toeplitz per calcolo di A secondo "NExT-ERA"
    Tb2 = np.vstack([
        np.hstack([R_is[_o, :, :] for _o in range(br + _l, _l, -1)])
        for _l in range(1, br + 1)
    ])

    # =============================================================================
    # SINGULAR VALUE DECOMPOSITION
    # =============================================================================
    U1, S1, V1_t = np.linalg.svd(Tb)
    S1 = np.diag(S1)
    S1rad = np.sqrt(S1)
    # =============================================================================
    # Ciclo per ordine del sistema crescente
    # =============================================================================
    Fr = np.full((ordmax, ordmax + 1),
                 np.nan)  # inizializzo la matrice che conterrà le frequenze
    Fr_lab = np.full(
        (ordmax, ordmax + 1), np.nan
    )  # inizializzo la matrice che conterrà le labels per i poli(frequenze) da stampare nel diagramma di stabilizzazione
    Sm = np.full((ordmax, ordmax + 1),
                 np.nan)  # inizializzo la matrice che conterrà gli smorzamenti
    Ms = []  # inizializzo la matrice (3D) che conterrà le forme modali
    for z in range(0, int((ordmax) / 2 + 1)):
        Ms.append(np.zeros((nch, z * (2))))
# =============================================================================
    for _ind in range(0, ordmax + 1, 2):
        # Inizializzo le matrici che mi servono
        S11 = np.zeros((_ind, _ind))  # Inizializzo
        U11 = np.zeros((br * nch, _ind))  # Inizializzo
        V11 = np.zeros((_ind, br * nch))  # Inizializzo
        O_1 = np.zeros((br * nch - nch, _ind))  # Inizializzo
        O_2 = np.zeros((br * nch - nch, _ind))  # Inizializzo
        # =============================================================================
        # Estrazione di sottomatrici per ordine crescente del sistema
        S11[:_ind, 0:_ind] = S1rad[
            0:_ind, 0:
            _ind]  # ESTRAZIONE DI UNA SOTTOMATRICE DEI SINGULAR VALUES DA ORDINE MIN A ORD MAX
        U11[:br * nch, 0:_ind] = U1[
            0:br * nch, 0:
            _ind]  # ESTRAZIONE DI UNA SOTTOMATRICE DEI LEFT SINGULAR VECTORS DA ORDINE MIN A ORD MAX
        V11[0:_ind, :br * nch] = V1_t[0:_ind, 0:br * nch]  #
        # =============================================================================
        O = U11 @ S11  # CALCOLO MATRICE DI OSSERVABILITA
        _GAM = S11 @ V11  # CALCOLO MATRICE DI CONTROLLABILITA

        O_1[:, :] = O[:O.shape[0] - nch, :]
        O_2[:, :] = O[nch:, :]
        # =============================================================================
        # STIMA DELLA MATRICE DINAMICA A TEMPO DISCRETO
        if method == '2':
            A = np.linalg.inv(S11) @ U11.T @ Tb2 @ V11.T @ np.linalg.inv(
                S11)  # METODO "NExT-ERA"
        else:
            A = np.linalg.pinv(O_1) @ O_2  # METODO 2 (BALANCED_REALIZATION)

        [_AuVal,
         _AuVett] = np.linalg.eig(A)  # CALCOLO AUTOVALORI ED AUTOVETTORI
        Lambda = (np.log(_AuVal)) * fs  # CALCOLO Lambda
        fr = abs(Lambda) / (2 * np.pi)  # CALCOLO FRQUENZE
        smorz = -((np.real(Lambda)) / (abs(Lambda)))  # CALCOLO SMORZAMENTO

        # calcolo la matrice C per definizione dei modi
        # le deformate modali M in forma complessa sono calcolate attraverso
        # l'espressione M=CL dove L è la matrice le cui colonne sono gli autovettori
        # di A (_AuVett)
        C = O[:nch, :]

        Mcomp = C @ _AuVett
        Mreal = np.real(C @ _AuVett)

        Fr[:len(fr), _ind] = fr  # SALVA LE FREQUENZE
        Sm[:len(fr), _ind] = smorz  # SALVA gli smorzamenti
        Ms[int(_ind / 2)] = Mcomp  # SALVA le forme modali
        # =============================================================================
        # Controllo stabilità dei poli
        for idx, (_freq, _smor) in enumerate(zip(fr, smorz)):
            if _ind == 0 or _ind == 2:  # alla prima iterazione/primo ordine sono tutti nuovi poli
                Fr_lab[:len(
                    fr
                ), _ind] = 0  # 0 è l'etichetta per i nuovi poli e poli instabili

            elif np.isnan(_freq) == True:
                _freq = 0
                Fr[idx, _ind] = 0

            else:
                # Trovo l'indice del polo che minimizza la differenza alla iterazione/ordine n-1
                ind2 = np.nanargmin(
                    abs(_freq - Fr[:, (_ind) - 2]) -
                    min(abs(_freq - Fr[:, (_ind) - 2])))

                Fi_n = Mcomp[:,
                             idx]  # forma modale all'iterazione = _iteraz (attuale)
                Fi_nmeno1 = Ms[int(
                    _ind / 2 - 1
                )][:,
                   ind2]  # forma modale all'iterazione = _iteraz-1 (precedente)

                # aMAC = np.abs(Fi_n@Fi_nmeno1)**2 / ((Fi_n@Fi_n)*(Fi_nmeno1@Fi_nmeno1)) # autoMAC
                aMAC = MaC(Fi_n.real, Fi_nmeno1.real)

                if min(abs(_freq - Fr[:, (_ind) - 2]) /
                       _freq) < _lim_f:  # CONDIZIONE 1 SULLA FREQUENZA

                    if (_smor - Sm[ind2, (_ind) - 2]
                        ) / _smor < _lim_s:  # CONDIZIONE 2 SULLO SMORZAMENTO
                        if 1 - aMAC < _lim_ms:  # CONDIZIONE 3 SULLE FORME MODALI
                            Fr_lab[
                                idx,
                                _ind] = 4  # Se il polo è stabile sia per smorzamento che per forma modale (viene classificato come stabile/verde)
                        else:
                            Fr_lab[
                                idx,
                                _ind] = 2  # Stabile per smorzamento ma non per forma modale

                    elif 1 - aMAC < _lim_ms:  # CONDIZIONE 3 SULLE FORME MODALI
                        Fr_lab[
                            idx,
                            _ind] = 3  # Stabile per forma modale ma non per smorzamento

                    else:
                        Fr_lab[idx, _ind] = 1  # Stabile solo per frequenza
                else:
                    Fr_lab[idx, _ind] = 0  # Nuovo polo o polo instabile

# =============================================================================
# PLOT DIAGRAMMA DI STABILIZZAZZIONE
# =============================================================================
    _x = Fr.flatten(order='f')
    _y = np.array([_i // len(Fr) for _i in range(len(_x))])
    _l = Fr_lab.flatten(order='f')
    _d = Sm.flatten(order='f')

    _df = pd.DataFrame(dict(Frequency=_x, Order=_y, Label=_l, Damp=_d))
    _df1 = _df.copy(
    )  # DataFrame che mi serve per plot diagramma stabilizzazione

    # =============================================================================
    # Qui creo un dataframe "ridotto" (senza nan) dove sono salvate: frequenze,
    # smorzamenti e indici della forma modale associata al polo (order, emme)
    df2 = _df.copy()
    df2 = df2.dropna()
    emme = []
    for effe, order in zip(df2.Frequency, df2.Order):
        emme.append(np.nanargmin(abs(effe - Fr[:, order])))  # trovo l'indice
    emme = np.array(emme)
    df2['Emme'] = emme
    df2 = df2.drop_duplicates()
    df2 = df2.drop(columns='Label')
    # =============================================================================

    _df1.Frequency = _df1.Frequency.where(
        _df.Damp < _lim_s1
    )  # qui rimuovo tutti i poli che hanno smorzamento maggiore di lim_s1
    _df1.Frequency = _df1.Frequency.where(
        _df.Damp >
        0)  # qui rimuovo tutti i poli che hanno smorzamento negativo (< 0)

    _colors = {
        0: 'Red',
        1: 'darkorange',
        2: 'gold',
        3: 'yellow',
        4: 'Green'
    }  # assegno i colori alle etichette dei poli

    fig1, ax1 = plt.subplots()
    ax1 = sns.scatterplot(_df1['Frequency'],
                          _df1['Order'],
                          hue=_df1['Label'],
                          palette=_colors)

    ax1.set_xlim(left=0, right=freq_max)
    ax1.set_ylim(bottom=0, top=ordmax)
    ax1.xaxis.set_major_locator(MultipleLocator(freq_max / 10))
    ax1.xaxis.set_major_formatter(FormatStrFormatter('%g'))
    ax1.xaxis.set_minor_locator(MultipleLocator(freq_max / 100))
    ax1.set_title('''{0} - shift: {1}'''.format('Stabilization Diagram', br))
    ax1.set_xlabel('Frequency [Hz]')
    mplcursors.cursor()
    plt.show()

    Results = {}
    Results['Data'] = {'Data': data}
    Results['Data']['Samp. Freq.'] = fs
    Results['All Poles'] = _df1
    Results['Reduced Poles'] = df2
    Results['Modes'] = Ms

    return fig1, Results
Example #41
0
def find_best_cuts_sensitivity(simtelfile_gammas,
                               simtelfile_protons,
                               dl2_file_g,
                               dl2_file_p,
                               nfiles_gammas,
                               nfiles_protons,
                               n_bins_energy,
                               n_bins_gammaness,
                               n_bins_theta2,
                               noff,
                               obstime=50 * 3600 * u.s):
    """
    Main function to find the best cuts to calculate the sensitivity
    based on a given a MC data subset

    Parameters
    ---------
    simtelfile_gammas: `string` path to simtelfile of gammas with mc info
    simtelfile_protons: `string` path to simtelfile of protons with mc info
    dl2_file_g: `string` path to h5 file of reconstructed gammas
    dl2_file_p: `string' path to h5 file of reconstructed protons
    nfiles_gammas: `int` number of simtel gamma files reconstructed
    nfiles_protons: `int` number of simtel proton files reconstructed
    n_bins_energy: `int` number of bins in energy
    n_bins_gammaness: `int` number of bins in gammaness
    n_bins_theta2: `int` number of bins in theta2
    noff: `float` ratio between the background and the signal region
    obstime: `Quantity` Observation time in seconds

    Returns
    ---------
    energy: `array` center of energy bins
    sensitivity: `array` sensitivity per energy bin

    """

    # Read simulated and reconstructed values
    gammaness_g, theta2_g, e_reco_g, e_true_g, mc_par_g, events_g = process_mc(
        simtelfile_gammas, dl2_file_g, 'gamma')
    gammaness_p, angdist2_p, e_reco_p, e_true_p, mc_par_p, events_p = process_mc(
        simtelfile_protons, dl2_file_p, 'proton')

    mc_par_g['sim_ev'] = mc_par_g['sim_ev'] * nfiles_gammas
    mc_par_p['sim_ev'] = mc_par_p['sim_ev'] * nfiles_protons

    # Pass units to TeV and cm2
    mc_par_g['emin'] = mc_par_g['emin'].to(u.TeV)
    mc_par_g['emax'] = mc_par_g['emax'].to(u.TeV)

    mc_par_p['emin'] = mc_par_p['emin'].to(u.TeV)
    mc_par_p['emax'] = mc_par_p['emax'].to(u.TeV)

    mc_par_g['area_sim'] = mc_par_g['area_sim'].to(u.cm**2)
    mc_par_p['area_sim'] = mc_par_p['area_sim'].to(u.cm**2)

    # Set binning for sensitivity calculation
    # TODO: This information should be read from the files
    emin_sensitivity = 0.01 * u.TeV  # mc_par_g['emin']
    emax_sensitivity = 100 * u.TeV  # mc_par_g['emax']

    energy = np.logspace(np.log10(emin_sensitivity.to_value()),
                         np.log10(emax_sensitivity.to_value()),
                         n_bins_energy + 1) * u.TeV

    gammaness_bins, theta2_bins = bin_definition(n_bins_gammaness,
                                                 n_bins_theta2)

    # Extract spectral parameters
    dFdE, crab_par = crab_hegra(energy)
    dFdEd0, proton_par = proton_bess(energy)

    bins = np.logspace(np.log10(emin_sensitivity.to_value()),
                       np.log10(emax_sensitivity.to_value()),
                       n_bins_energy + 1)

    y0 = mc_par_g['sim_ev'] / (mc_par_g['emax'].to_value()**(mc_par_g['sp_idx'] + 1) \
                               - mc_par_g['emin'].to_value()**(mc_par_g['sp_idx'] + 1)) \
        * (mc_par_g['sp_idx'] + 1)
    y = y0 * (bins[1:]**(crab_par['alpha'] + 1) -
              bins[:-1]**(crab_par['alpha'] + 1)) / (crab_par['alpha'] + 1)

    n_sim_bin = y

    # Rates and weights
    rate_g = rate("PowerLaw", mc_par_g['emin'], mc_par_g['emax'], crab_par,
                  mc_par_g['cone'], mc_par_g['area_sim'])

    rate_p = rate("PowerLaw", mc_par_p['emin'], mc_par_p['emax'], proton_par,
                  mc_par_p['cone'], mc_par_p['area_sim'])

    w_g = weight("PowerLaw", mc_par_g['emin'], mc_par_g['emax'],
                 mc_par_g['sp_idx'], rate_g, mc_par_g['sim_ev'], crab_par)

    w_p = weight("PowerLaw", mc_par_p['emin'], mc_par_p['emax'],
                 mc_par_p['sp_idx'], rate_p, mc_par_p['sim_ev'], proton_par)

    if (w_g.unit == u.Unit("sr / s")):
        print(
            "You are using diffuse gammas to estimate point-like sensitivity")
        print("These results will make no sense")
        w_g = w_g / u.sr  # Fix to make tests pass

    rate_weighted_g = ((e_true_g / crab_par['e0']) ** (crab_par['alpha'] - mc_par_g['sp_idx'])) \
                      * w_g
    rate_weighted_p = ((e_true_p / proton_par['e0']) ** (proton_par['alpha'] - mc_par_p['sp_idx'])) \
                      * w_p

    p_contained, ang_area_p = ring_containment(angdist2_p, 0.4 * u.deg,
                                               0.3 * u.deg)

    # FIX: ring_radius and ring_halfwidth should have units of deg
    # FIX: hardcoded at the moment, but ring_radius should be read from
    # the gamma file (point-like) or given as input (diffuse).
    # FIX: ring_halfwidth should be given as input
    area_ratio_p = np.pi * theta2_bins / ang_area_p
    # ratio between the area where we search for protons ang_area_p
    # and the area where we search for gammas math.pi * t

    # Arrays to contain the number of gammas and hadrons for different cuts
    final_gamma = np.ndarray(shape=(n_bins_energy, n_bins_gammaness,
                                    n_bins_theta2))
    final_hadrons = np.ndarray(shape=(n_bins_energy, n_bins_gammaness,
                                      n_bins_theta2))
    pre_gamma = np.ndarray(shape=(n_bins_energy, n_bins_gammaness,
                                  n_bins_theta2))
    pre_hadrons = np.ndarray(shape=(n_bins_energy, n_bins_gammaness,
                                    n_bins_theta2))

    ngamma_per_ebin = np.ndarray(n_bins_energy)
    nhadron_per_ebin = np.ndarray(n_bins_energy)

    total_rate_proton = np.sum(rate_weighted_p)
    total_rate_gamma = np.sum(rate_weighted_g)
    print("Total rate triggered proton {:.3f} Hz".format(total_rate_proton))
    print("Total rate triggered gamma  {:.3f} Hz".format(total_rate_gamma))

    # Weight events and count number of events per bin:
    for i in range(0, n_bins_energy):  # binning in energy
        total_rate_proton_ebin = np.sum(
            rate_weighted_p[(e_reco_p < energy[i + 1])
                            & (e_reco_p > energy[i])])

        print("\n******** Energy bin: {:.3f} - {:.3f} TeV ********".format(
            energy[i].value, energy[i + 1].value))
        total_rate_proton_ebin = np.sum(
            rate_weighted_p[(e_reco_p < energy[i + 1])
                            & (e_reco_p > energy[i])])
        total_rate_gamma_ebin = np.sum(
            rate_weighted_g[(e_reco_g < energy[i + 1])
                            & (e_reco_g > energy[i])])

        #print("**************")
        print("Total rate triggered proton in this bin {:.5f} Hz".format(
            total_rate_proton_ebin.value))
        print("Total rate triggered gamma in this bin {:.5f} Hz".format(
            total_rate_gamma_ebin.value))

        for j in range(0, n_bins_gammaness):  #  cut in gammaness
            for k in range(0, n_bins_theta2):  #  cut in theta2
                rate_g_ebin = np.sum(rate_weighted_g[(e_reco_g < energy[i+1]) & (e_reco_g > energy[i]) \
                                            & (gammaness_g > gammaness_bins[j]) & (theta2_g < theta2_bins[k])])

                rate_p_ebin = np.sum(rate_weighted_p[(e_reco_p < energy[i+1]) & (e_reco_p > energy[i]) \
                                            & (gammaness_p > gammaness_bins[j]) & p_contained])
                final_gamma[i][j][k] = rate_g_ebin * obstime
                final_hadrons[i][j][
                    k] = rate_p_ebin * obstime * area_ratio_p[k]

                pre_gamma[i][j][k] = e_reco_g[(e_reco_g < energy[i+1]) & (e_reco_g > energy[i]) \
                                            & (gammaness_g > gammaness_bins[j]) & (theta2_g < theta2_bins[k])].shape[0]
                pre_hadrons[i][j][k] = e_reco_p[(e_reco_p < energy[i+1]) & (e_reco_p > energy[i]) \
                                            & (gammaness_p > gammaness_bins[j]) & p_contained].shape[0]

                ngamma_per_ebin[i] = np.sum(
                    rate_weighted_g[(e_reco_g < energy[i + 1])
                                    & (e_reco_g > energy[i])]) * obstime
                nhadron_per_ebin[i] = np.sum(
                    rate_weighted_p[(e_reco_p < energy[i + 1])
                                    & (e_reco_p > energy[i])]) * obstime

    n_excesses_5sigma, sensitivity_3Darray = calculate_sensitivity_lima(
        final_gamma, final_hadrons * noff,
        1 / noff * np.ones_like(final_gamma), n_bins_energy, n_bins_gammaness,
        n_bins_theta2)

    # Avoid bins which are empty or have too few events:
    min_num_events = 5
    min_pre_events = 5

    # Minimum number of gamma and proton events in a bin to be taken into account for minimization
    for i in range(0, n_bins_energy):
        for j in range(0, n_bins_gammaness):
            for k in range(0, n_bins_theta2):
                conditions = (not np.isfinite(sensitivity_3Darray[i,j,k])) or (sensitivity_3Darray[i,j,k]<=0) \
                             or (final_hadrons[i,j,k] < min_num_events) \
                             or (pre_gamma[i,j,k] < min_pre_events) \
                             or (pre_hadrons[i,j,k] < min_pre_events)
                if conditions:
                    sensitivity_3Darray[i][j][k] = np.inf

    # Quantities to show in the results
    sensitivity = np.ndarray(shape=n_bins_energy)
    n_excesses_min = np.ndarray(shape=n_bins_energy)
    eff_g = np.ndarray(shape=n_bins_energy)
    eff_p = np.ndarray(shape=n_bins_energy)
    gcut = np.ndarray(shape=n_bins_energy)
    tcut = np.ndarray(shape=n_bins_energy)
    ngammas = np.ndarray(shape=n_bins_energy)
    nhadrons = np.ndarray(shape=n_bins_energy)
    gammarate = np.ndarray(shape=n_bins_energy)
    hadronrate = np.ndarray(shape=n_bins_energy)
    eff_area = np.ndarray(shape=n_bins_energy)
    nevents_gamma = np.ndarray(shape=n_bins_energy)
    nevents_proton = np.ndarray(shape=n_bins_energy)

    # Calculate the minimum sensitivity per energy bin
    for i in range(0, n_bins_energy):
        ind = np.unravel_index(np.nanargmin(sensitivity_3Darray[i], axis=None),
                               sensitivity_3Darray[i].shape)
        gcut[i] = gammaness_bins[ind[0]]
        tcut[i] = theta2_bins[ind[1]].to_value()
        ngammas[i] = final_gamma[i][ind]
        nhadrons[i] = final_hadrons[i][ind]
        gammarate[i] = final_gamma[i][ind] / (obstime.to(u.min)).to_value()
        hadronrate[i] = final_hadrons[i][ind] / (obstime.to(u.min)).to_value()
        n_excesses_min[i] = n_excesses_5sigma[i][ind]
        sensitivity[i] = sensitivity_3Darray[i][ind]
        eff_g[i] = final_gamma[i][ind] / ngamma_per_ebin[i]
        eff_p[i] = final_hadrons[i][ind] / nhadron_per_ebin[i]

        e_aftercuts = e_true_g[(e_reco_g < energy[i + 1]) & (e_reco_g > energy[i]) \
                               & (gammaness_g > gammaness_bins[ind[0]]) & (theta2_g < theta2_bins[ind[1]])]


        e_aftercuts_p = e_true_p[(e_reco_p < energy[i + 1]) & (e_reco_p > energy[i]) \
                                 & p_contained]
        e_aftercuts_w = np.sum(
            np.power(e_aftercuts, crab_par['alpha'] - mc_par_g['sp_idx']))

        eff_area[i] = e_aftercuts_w.to_value(
        ) / n_sim_bin[i] * mc_par_g['area_sim'].to(u.m**2).to_value()

        nevents_gamma[i] = e_aftercuts.shape[0]
        nevents_proton[i] = e_aftercuts_p.shape[0]

    # Compute sensitivity in flux units
    egeom = np.sqrt(energy[1:] * energy[:-1])
    dFdE, par = crab_hegra(egeom)
    sensitivity_flux = sensitivity / 100 * (dFdE * egeom * egeom).to(
        u.erg / (u.cm**2 * u.s))

    list_of_tuples = list(
        zip(energy[:energy.shape[0] - 2].to_value(), energy[1:].to_value(),
            gcut, tcut, ngammas,
            nhadrons, gammarate, hadronrate, n_excesses_min,
            sensitivity_flux.to_value(), eff_area, eff_g, eff_p, nevents_gamma,
            nevents_proton))
    result = pd.DataFrame(list_of_tuples,
                          columns=[
                              'ebin_low', 'ebin_up', 'gammaness_cut',
                              'theta2_cut', 'n_gammas', 'n_hadrons',
                              'gamma_rate', 'hadron_rate', 'n_excesses_min',
                              'sensitivity', 'eff_area', 'eff_gamma',
                              'eff_hadron', 'nevents_g', 'nevents_p'
                          ])

    units = [
        energy.unit, energy.unit, "", theta2_bins.unit, "", "", u.min**-1,
        u.min**-1, "", sensitivity_flux.unit,
        mc_par_g['area_sim'].to(u.cm**2).unit, "", "", "", ""
    ]

    # sensitivity_minimization_plot(n_bins_energy, n_bins_gammaness, n_bins_theta2, energy, sensitivity_3Darray)
    # plot_positions_survived_events(events_g,
    #                               events_p,
    #                               gammaness_g, gammaness_p,
    #                               theta2_g, p_contained, sensitivity_3Darray, energy, n_bins_energy, g, t)

    return energy, sensitivity, result, units, gcut, tcut
Example #42
0
def event_to_list_and_dedup(network_events_final, nstations):
    #/ add all events to list (includes redundancies if event belongs to multiple pairs)
    networkIDs = sorted(network_events_final.keys())
    out = np.nan + np.ones((2 * len(networkIDs), nstations + 1))
    for i, nid in enumerate(networkIDs):
        tmp_dt = network_events_final[nid]['dt']
        for stid in xrange(nstations):
            if network_events_final[nid][stid]:
                if len(network_events_final[nid][stid]) == 2:
                    out[2 * i, stid] = network_events_final[nid][stid][0]
                    out[2 * i + 1, stid] = network_events_final[nid][stid][1]
                    out[2 * i, nstations] = nid
                    out[2 * i + 1, nstations] = nid
                elif len(
                        network_events_final[nid][stid]
                ) == 1:  #/ if only one event in "pair" (i.e dt is small - TODO: ensure this case can't happen)
                    out[2 * i, stid] = network_events_final[nid][stid][0]
                    out[2 * i + 1, stid] = network_events_final[nid][stid][0]
                    out[2 * i, nstations] = nid
                    out[2 * i + 1, nstations] = nid
                else:  # if multiple
                    tmp_ts = network_events_final[nid][stid]
                    sidx = [
                        0,
                        np.argmax(
                            [q - p
                             for p, q in zip(tmp_ts[:-1], tmp_ts[1:])]) + 1
                    ]
                    out[2 * i, stid] = np.min(tmp_ts[sidx[0]:sidx[1]])
                    out[2 * i + 1, stid] = np.min(tmp_ts[sidx[1]:])
                    out[2 * i, nstations] = nid
                    out[2 * i + 1, nstations] = nid

    ## remove duplicates from event-list (find and remove entries that are identical up to missing values (nan)) ##
    out2 = out[:, 0:nstations]
    netids2 = list(out[:, nstations].astype(int))

    for sta in xrange(nstations):
        row_sort0 = np.argsort(out2[:, sta])
        out2 = out2[row_sort0, :]
        netids2 = [netids2[x] for x in row_sort0]
        n1, n2 = np.shape(out2)
        keep_row = np.zeros(n1, dtype=bool)
        network_eventlist = list()
        tmp_neventlist = list()
        for i in xrange(n1 - 1):
            if np.all((out2[i, :] == out2[i + 1, :]) | np.isnan(out2[i, :])
                      | np.isnan(out2[i + 1, :])) & np.any(
                          out2[i, :] == out2[i + 1, :]):  #/ if match or nan
                out2[i + 1, :] = np.nanmin((out2[i, :], out2[i + 1, :]),
                                           axis=0)  #/ fill in nans
                tmp_neventlist.append(netids2[i])
            else:
                keep_row[i] = True
                tmp_neventlist.append(netids2[i])  #/ network id
                network_eventlist.append(tmp_neventlist)
                tmp_neventlist = list()
            if i == n1 - 2:  #/ add final event
                keep_row[i + 1] = True
                tmp_neventlist.append(netids2[i + 1])
                network_eventlist.append(tmp_neventlist)
                tmp_neventlist = list()
        out2 = out2[keep_row, :]
        netids2 = network_eventlist

    def list_flatten(S):
        if S == []:
            return S
        if isinstance(S[0], list):
            return flatten(S[0]) + flatten(S[1:])
        return S[:1] + flatten(S[1:])

    netids2 = [list_flatten(x) for x in netids2]  #/ to check if any missing

    nfinal, n2 = np.shape(out2)
    tmp = np.nanargmin(out2, axis=1)
    row_sort = np.argsort(out2[np.arange(0, nfinal), tmp])
    final_eventlist = out2[row_sort, :]
    network_eventlist = [netids2[k] for k in row_sort]

    return final_eventlist, network_eventlist, nfinal
Example #43
0
def _make_trajectory(session, ref_lap):
    """Create telemetry Distance
    """
    telemetry = ref_lap.telemetry

    if telemetry.size != 0:
        x = telemetry['X'].values
        y = telemetry['Y'].values
        z = telemetry['Z'].values
        s = telemetry['Distance'].values

        # Assuming constant speed in the last tenth
        dt0_ = (ref_lap['LapTime'] - telemetry['Time'].iloc[-1]).total_seconds()
        ds0_ = (telemetry['Speed'].iloc[-1] / 3.6) * dt0_
        total_s = s[-1] + ds0_

        # To prolong start and finish and have a correct linear interpolation
        full_s = np.concatenate([s - total_s, s, s + total_s])
        full_x = np.concatenate([x, x, x])
        full_y = np.concatenate([y, y, y])
        full_z = np.concatenate([z, z, z])

        reference_s = np.arange(0, total_s, REFERENCE_LAP_RESOLUTION)

        reference_x = np.interp(reference_s, full_s, full_x)
        reference_y = np.interp(reference_s, full_s, full_y)
        reference_z = np.interp(reference_s, full_s, full_z)

        ssize = len(reference_s)

        """Build track map and project driver position to one trajectory
        """

        def fix_suzuka(projection_index, _s):
            """Yes, suzuka is bad
            """

            # For tracks like suzuka (therefore only suzuka) we have
            # a beautiful crossing point. So, FOR F**K SAKE, sometimes
            # shortest distance may fall below the bridge or viceversa
            # gotta do some monotony sort of check. Not the cleanest
            # solution.
            def moving_average(a, n=3):
                ret = np.cumsum(a, dtype=float)
                ret[n:] = ret[n:] - ret[:-n]
                ma = ret[n - 1:] / n

                return np.concatenate([ma[0:n // 2], ma, ma[-n // 2:-1]])

            ma_projection = moving_average(_s[projection_index], n=3)
            spikes = np.absolute(_s[projection_index] - ma_projection)
            # 1000 and 3000, very suzuka specific. Damn magic numbers
            sel_bridge = np.logical_and(spikes > 1000, spikes < 3000)
            unexpected = np.where(sel_bridge)[0]
            max_length = _s[-1]

            for p in unexpected:
                # Just assuming linearity for this 2 or 3 samples
                last_value = _s[projection_index[p - 1]]
                last_step = last_value - _s[projection_index[p - 2]]

                if (last_value + last_step) > max_length:
                    # Over the finish line
                    corrected_distance = -max_length + last_step + last_value
                else:
                    corrected_distance = last_value + last_step

                corrected_index = np.argmin(np.abs(_s - corrected_distance))
                projection_index[p] = corrected_index

            return projection_index

        track = np.empty((ssize, 3))
        track[:, 0] = reference_x
        track[:, 1] = reference_y
        track[:, 2] = reference_z

        track_tree = scipy.spatial.cKDTree(track)
        drivers_list = np.array(list(session.drivers))
        stream_length = len(session.pos_data[drivers_list[0]])
        dmap = np.empty((stream_length, len(drivers_list)), dtype=int)

        fast_query = {'n_jobs': 2, 'distance_upper_bound': 500}
        # fast_query < Increases speed
        for index, drv in enumerate(drivers_list):
            if drv not in session.pos_data.keys():
                logging.warning(f"Driver {drv: >2}: No position data. (_make_trajectory)")
                continue
            trajectory = session.pos_data[drv][['X', 'Y', 'Z']].values
            projection_index = track_tree.query(trajectory, **fast_query)[1]
            # When tree cannot solve super far points means there is some
            # pit shit shutdown. We can replace these index with 0
            projection_index[projection_index == len(reference_s)] = 0
            dmap[:, index] = fix_suzuka(projection_index.copy(), reference_s)

        """Create transform matrix to change distance point of reference
        """
        t_matrix = np.empty((ssize, ssize))
        for index in range(ssize):
            rref = reference_s - reference_s[index]
            rref[rref <= 0] = total_s + rref[rref <= 0]
            t_matrix[index, :] = rref

        """Create mask to remove distance elements when car is on track
        """
        time = session.pos_data[drivers_list[0]]['Time']
        pit_mask = np.zeros((stream_length, len(drivers_list)), dtype=bool)
        for driver_index, driver_number in enumerate(drivers_list):
            laps = session.laps.pick_driver(driver_number)
            in_pit = True
            times = [[], []]
            for lap_index in laps.index:
                lap = laps.loc[lap_index]
                if not pd.isnull(lap['PitInTime']) and not in_pit:
                    times[1].append(lap['PitInTime'])
                    in_pit = True
                if not pd.isnull(lap['PitOutTime']) and in_pit:
                    times[0].append(lap['PitOutTime'])
                    in_pit = False

            if not in_pit:
                # Car crashed, we put a time and 'Status' will take care
                times[1].append(lap['Time'])
            times = np.transpose(np.array(times))
            for inout in times:
                out_of_pit = np.logical_and(time >= inout[0], time < inout[1])
                pit_mask[:, driver_index] |= out_of_pit
            on_track = (session.pos_data[driver_number]['Status'] == 'OnTrack')
            pit_mask[:, driver_index] &= on_track.values

        """Calculate relative distances using transform matrix
        """
        driver_ahead = {}
        stream_axis = np.arange(stream_length)
        for my_di, my_d in enumerate(drivers_list):
            rel_distance = np.empty(np.shape(dmap))

            for his_di, his_d in enumerate(drivers_list):
                my_pos_i = dmap[:, my_di]
                his_pos_i = dmap[:, his_di]
                rel_distance[:, his_di] = t_matrix[my_pos_i, his_pos_i]

            his_in_pit = ~pit_mask.copy()
            his_in_pit[:, my_di] = False
            my_in_pit = ~pit_mask[:, drivers_list == my_d][:, 0]
            rel_distance[his_in_pit] = np.nan

            closest_index = np.nanargmin(rel_distance, axis=1)
            closest_distance = rel_distance[stream_axis, closest_index]
            closest_driver = drivers_list[closest_index].astype(object)
            closest_distance[my_in_pit] = np.nan
            closest_driver[my_in_pit] = None

            data = {'DistanceToDriverAhead': closest_distance,
                    'DriverAhead': closest_driver}
            driver_ahead[my_d] = session.pos_data[my_d].join(pd.DataFrame(data), how='outer')

    else:
        # no data to base calculations on; create empty results
        driver_ahead = dict()
        for drv in session.drivers:
            data = {'DistanceToDriverAhead': (), 'DriverAhead': ()}
            driver_ahead[drv] = session.pos_data[drv].join(pd.DataFrame(data), how='outer')

    return driver_ahead
    def fit(self, X, y, n_epochs=None,
            validation_set=None, max_fail=5, thresold_fail=1.5):

        print(self.dropout)
        print(self.batch_size)
        print(self.optimizer_classes)
        self.p_init = self.dropout[0]
        self.p_hidden = self.dropout[1]
        self.net_class_init = functools.partial(self.net_class, n_features=X.shape[1], n_classes=len(np.unique(y)),
                                                dropout=self.dropout)
        if n_epochs == None:
            n_epochs = self.n_epochs
        if validation_set == None:
            validation_set = self.validation_set

        ## Load the data
        input, target = torch.from_numpy(X), torch.from_numpy(y)
        dataset = TensorDataset(input, target)
        trainloader = self.load_data(dataset)

        ## Create the different initialisation (i.e create different nets)
        net_list = self.multi_init()

        ## Train the nets
        print("BEGINNING TRAINING")
        loss_list = list()
        loss_list_validation = list()
        best_net_on_validation = [None, np.inf]
        for epoch in range(n_epochs):
            for net in net_list:
                net[2] = 0.0
                n_iter = 0
            for data in trainloader:
                input, target = data
                target = target.view(-1)
                input, target = Variable(input).float(), Variable(target).long()
                for i in range(len(net_list)):
                    net, optimizer, _ = net_list[i]
                    optimizer.zero_grad()
                    output = net(input)
                    loss = self.criterion(output, target)
                    loss.backward()
                    optimizer.step()
                    net_list[i][2] += loss.data[0]
                n_iter += 1
            index_min = np.nanargmin([net[2] for net in net_list])
            print(net_list[index_min][2] / n_iter)
            loss_list.append(net_list[index_min][2] / n_iter)
            ## Check the loss on the validation set and stop if it's increasing for at least max_fail epochs
            #  or go back above thresold_fail * (minimum loss attained on the validation set)
            if validation_set:
                # copy the best net and make it in evaluation mode for scoring
                best_net = copy.deepcopy(net_list[index_min][0])
                weight_scaling_inference_rule(best_net, self.p_init, self.p_hidden)
                best_net.eval()
                score = self.score(validation_set[0], validation_set[1], best_net)
                print(score)
                loss_list_validation.append(score)
                if score < best_net_on_validation[1]:  # WARNING : loss or score ???
                    best_net_on_validation = [best_net, score]
                if (score > thresold_fail * best_net_on_validation[1] or
                                max_fail < len(loss_list_validation)
                        and (np.array([loss_list_validation[i] - loss_list_validation[i - 1] for i in
                                       range(- 1, - max_fail - 1, - 1)]) > 0).all()
                    ):
                    print("EARLY STOPPING")
                    self.trained_net = best_net_on_validation[0]
                    return loss_list, loss_list_validation
            ##

            if len(net_list) > 1:
                del net_list[np.argmax([net[2] for net in net_list])]
            print(epoch)

        self.trained_net = best_net_on_validation[0]
        # self.trained_net = net_list[-1][0] # for training on train
        l = loss_list, loss_list_validation  # before
        # return self #for sklearn
        return l
Example #45
0
 def test_nanargmin(self):
     tgt = np.argmin(self.mat)
     for mat in self.integer_arrays():
         assert_equal(np.nanargmin(mat), tgt)
Example #46
0
    def argf(self, *args, **kwargs): return np.nanargmin(*args, **kwargs)

class nanmax(A_extremum):
Example #47
0
 def argf(self, *args, **kwargs):
     return np.nanargmin(*args, **kwargs)
Example #48
0
def main():

    # df_trn = pd.read_csv("df_trn_pool_SD_reddots.csv")
    df_trn = pd.read_csv("df_trn_SD_AS2019_PA_CQT.csv")
    tag_trn = df_trn['SDkey']
    f = lambda x: tuple([str(s) for s in x.split(",")])
    tag_trn = tag_trn.apply(f)
    df_trn['tag_trn'] = tag_trn

    # df_test = pd.read_csv("df_val_SD_AS2019_PA_CQT.csv")
    df_test = pd.read_csv("df_eval_SD_AS2019_PA_CQT.csv")
    tag_val = df_test['SDkey']
    f = lambda x: tuple([str(s) for s in x.split(",")])
    tag_val = tag_val.apply(f)
    df_test['tag_eval'] = tag_val

    # datagen=ImageDataGenerator(rescale=1./255.,validation_split=0.20)
    datagen = ImageDataGenerator(rescale=1. / 255.)
    test_datagen = ImageDataGenerator(rescale=1. / 255.)

    train_generator = datagen.flow_from_dataframe(
        dataframe=df_trn,
        directory=None,
        x_col="Filenames",
        y_col="tag_trn",
        # subset="training",
        color_mode='grayscale',
        batch_size=bs,
        seed=66,
        shuffle=True,
        class_mode="categorical",
        classes=trn_dev_classes,
        target_size=(863, 400))
    '''
    valid_generator=datagen.flow_from_dataframe(
    dataframe=df_trn,
    directory=None,
    x_col="Filenames",
    y_col="tag_trn",
    subset="validation",
    color_mode='grayscale',
    batch_size=bs,
    seed=66,
    shuffle=True,
    class_mode="categorical",
    classes=trn_dev_classes,
    target_size=(400,80))
    '''

    test_generator = test_datagen.flow_from_dataframe(dataframe=df_test,
                                                      directory=None,
                                                      x_col="Filenames",
                                                      y_col="tag_eval",
                                                      color_mode='grayscale',
                                                      batch_size=1,
                                                      seed=66,
                                                      shuffle=False,
                                                      class_mode="categorical",
                                                      target_size=(863, 400))

    model = load_model('model.hdf5',
                       custom_objects={'asoftmax_loss': asoftmax_loss})
    # model.compile(optimizers.Adam(lr=5e-5, beta_1=0.9, beta_2=0.999),loss="categorical_crossentropy",metrics=["accuracy"])
    model.compile(optimizers.Adam(lr=5e-5, beta_1=0.9, beta_2=0.999),
                  loss=asoftmax_loss,
                  metrics=["accuracy"])

    STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size
    STEP_SIZE_TEST = test_generator.n // test_generator.batch_size

    test_generator.reset()
    pred = model.predict_generator(test_generator,
                                   steps=STEP_SIZE_TEST,
                                   verbose=1)

    np.savetxt("pred.csv", pred, delimiter=',', fmt='%1.4f')
    predicted_class_indices = np.argmax(pred, axis=1)
    labels = (train_generator.class_indices)
    labels = dict((v, u) for u, v in labels.items())
    predictions = [labels[u] for u in predicted_class_indices]
    filenames = test_generator.filenames
    results = pd.DataFrame({"Filename": filenames, "Predictions": predictions})
    results.to_csv("results.csv", index=False)

    # EER calculation
    fpr, tpr, thresholds = roc_curve(test_generator.classes,
                                     pred[:, 0],
                                     pos_label=0)
    fnr = 1 - tpr
    EER = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
    det_data = pd.DataFrame({"fpr": fpr, "fnr": fnr})
    det_data.to_csv("DET.csv", index=False)
    print EER
Example #49
0
def file_loop(f):
    print('Doing file: ' + f)

    dic = xr.open_dataset(f)
    edate = pd.Timestamp(dic.time.values)

    out = dictionary()
    res = []
    outt = dic['tc_lag0'].values
    outp = dic['p'].values

    out['lon'] = dic['lon'].values
    out['lat'] = dic['lat'].values
    out['hour'] = dic['time.hour'].item()
    out['month'] = dic['time.month'].item()
    out['year'] = dic['time.year'].item()
    out['date'] = dic['time'].values

    if np.nanmin(dic['tc_lag0'].values) > -53:
        return
    #ipdb.set_trace()
    out['clat'] = np.min(out['lat'])+((np.max(out['lat'])-np.min(out['lat']))*0.5)
    out['clon'] = np.min(out['lon']) + ((np.max(out['lon']) - np.min(out['lon'])) * 0.5)

    if (out['clat']<9) | (out['clon']<-15) | (out['clon']>15):
        print('MCS out of box')
        return


    # if edate.hour < 17:
    #     return

    try:
        era_pl = xr.open_dataset(cnst.ERA5_HOURLY_PL+'ERA5_'+str(dic['time.year'].values)+'_'+str(dic['time.month'].values).zfill(2)+'_pl.nc')
    except:
        print('ERA5 missing')
        return
    try:
        era_srfc = xr.open_dataset(cnst.ERA5_HOURLY_SRFC+'ERA5_'+str(dic['time.year'].values)+'_'+str(dic['time.month'].values).zfill(2)+'_srfc.nc')
    except:
        print('ERA5 srfc missing')
        return
    era_pl = uda.flip_lat(era_pl)
    era_srfc = uda.flip_lat(era_srfc)

    edate = edate.replace(hour=12, minute=0)

    era_pl_day = era_pl.sel(time=edate, longitude=slice(-16,17), latitude=slice(4,26))
    era_srfc_day = era_srfc.sel(time=edate, longitude=slice(-16,17), latitude=slice(4,26))


    tminpos = np.where(dic['tc_lag0'].values == np.nanmin(dic['tc_lag0'].values)) # era position close to min temp
    if len(tminpos[0])>1:
        ptmax = np.nanmax((dic['p'].values)[tminpos])
        if ptmax > 0:
            prpos = np.where((dic['p'].values)[tminpos] == ptmax)
            tminpos = ((tminpos[0])[prpos], (tminpos[1])[prpos] )
        else:
            tminpos = ((tminpos[0])[0], (tminpos[1])[0])

    elon = dic['lon'].values[tminpos]
    elat = dic['lat'].values[tminpos]

    era_day = era_pl_day.sel(latitude=elat, longitude=elon , method='nearest') # take point of minimum T
    era_day_srfc = era_srfc_day.sel(latitude=elat, longitude=elon , method='nearest') # take point of minimum T

    del era_srfc_day

    e925 = era_day.sel(level=925).mean()

    e850 = era_pl_day['t'].sel(level=850)
    elow = era_day.sel(level=slice(925,850)).mean('level').mean()
    e650 = era_day.sel(level=650).mean()
    emid = era_day.sel(level=slice(600,700)).mean('level').mean()
    srfc = era_day_srfc.mean()


    t_thresh = -50  # -40C ~ 167 W m-2
    mask = np.isfinite(outp) & (outt<=t_thresh) & np.isfinite(outt)
    mask_area = (outt<=t_thresh) & np.isfinite(outt)
    mask70 = (outt<=-70) & np.isfinite(outt)

    if np.sum(mask) < 3:
        return

    print(np.nanmax(outt[mask]))   # can be bigger than cutout threshold because of interpolation to 5km grid after cutout

    out['area'] = np.sum(mask_area)
    out['area70'] = np.sum(mask70)

    out['tmin'] = np.min(outt[mask])
    out['tmean'] = np.mean(outt[mask])

    maxpos = np.unravel_index(np.nanargmax(outp), outp.shape)
    out['pmax'] = np.nanmean(ua.cut_kernel(outp,maxpos[1], maxpos[0],1)) #np.max(outp[mask])
    out['pmean'] = np.mean(outp[mask])

    dbox = e850.copy(deep=True)
    minlon = era_pl_day.sel(latitude=8, longitude=np.min(out['lon']), method='nearest')
    maxlon = era_pl_day.sel(latitude=8, longitude=np.max(out['lon']), method='nearest')

    del era_pl_day

    tgrad = dbox.sel(longitude=slice(minlon.longitude.values, maxlon.longitude.values)).mean('longitude')

    tmin = np.nanargmin(tgrad.values)
    tmax = np.nanargmax(tgrad.values)
    tgrad = tgrad.isel(latitude=slice(tmin, tmax))

    lingress = uda.linear_trend_lingress(tgrad)

    out['tgrad'] = lingress['slope'].values

    tgrad2 = dbox.sel(longitude=slice(np.min(out['lon']), np.max(out['lon'])), latitude=slice(10, 20)).mean(
        ['longitude', 'latitude']) - \
             dbox.sel(longitude=slice(np.min(out['lon']), np.max(out['lon'])), latitude=slice(5, 7)).mean(['longitude', 'latitude'])
    out['tbox'] = tgrad2.values

    try:
        out['q925'] =float(e925['q'])
    except TypeError:
        return

    out['q650'] = float(e650['q'])
    out['v925'] = float(e925['v'])
    out['v650'] = float(e925['v'])
    out['u925'] = float(e925['u'])
    out['u650'] = float(e650['u'])
    out['w925'] = float(e925['w'])
    out['w650'] = float(e650['w'])
    out['rh925'] = float(e925['r'])
    out['rh650'] = float(e650['r'])
    out['t925'] = float(e925['t'])
    out['t650'] = float(e650['t'])
    out['pv925'] = float(e925['pv'])
    out['pv650'] = float(e650['pv'])
    out['div925'] = float(e925['d'])
    out['div650'] = float(e650['d'])
    out['q_low'] = float(elow['q'])
    out['q_mid'] = float(emid['q'])
    out['tcwv'] = float(srfc['tcwv'])

    out['shear'] = float(e650['u']-e925['u'])

    theta_down = u_met.theta_e(925,e925['t']-273.15, e925['q'])
    theta_up = u_met.theta_e(650,e650['t']-273.15, e650['q'])

    out['dtheta'] =  (theta_down-theta_up).values
    out['thetaup'] = theta_up.values
    out['thetadown'] = theta_down.values

    out['pgt30'] = np.sum(outp[mask]>=30)
    out['isvalid'] = np.sum(mask)
    out['pgt01'] = np.sum(outp[mask]>=0.1)
    #
    out['p'] = outp[mask]
    out['t'] = outt[mask]
    #ipdb.set_trace()
    dic.close()

    return out
Example #50
0
def summary_gene_feature(qtl_results_file='qtl_results_',snp_metadata_file='snp_metadata_', feature_metadata_file='feature_metadata_',output_file='qtl_results_genome',\
                         feature_report='ensembl_gene_id',chr_list=[9],path_data=None,folder_qtl=None, \
                         p_value_field='p_value',p_value_raw_field='p_value',local_adjustment_method='Bonferroni', exclude_snps=['']):

    _doc = " aggregates qtl results to feature_report level"
    iichr = 0
    for ichr, chr in enumerate(chr_list):
        print('chromosome: ' + str(chr))

        try:
            frez = h5py.File(
                path_data + '/' + folder_qtl + '/' + qtl_results_file +
                str(chr) + '.h5', 'r')
            frezkeys = np.array(
                [k.replace('_i_', '') for k in list(frez.keys())])
            ffea = pandas.read_table(path_data + '/' + folder_qtl + '/' +
                                     feature_metadata_file + str(chr) + '.txt',
                                     sep='\t')
            fsnp = pandas.read_table(path_data + '/' + folder_qtl + '/' +
                                     snp_metadata_file + str(chr) + '.txt',
                                     sep='\t').set_index(
                                         'snp_id', drop=False).transpose()
            print(ffea.columns.values)
        except:
            print('chromosome' + str(chr) + ' missing')
            continue

        if ~np.in1d(feature_report, ffea.columns.values):
            ffea[feature_report] = ffea['feature_id']

        indexnan = np.where(
            (ffea[feature_report]) != (ffea[feature_report]))[0]
        for i in indexnan:
            ffea[feature_report][i] = 'gene_' + str(
                ffea['chromosome'][i]) + '_' + str(ffea['start'][i])
        ffea_feature = ffea.set_index('feature_id', drop=False).transpose()
        ffea_report_feature = ffea.set_index(feature_report,
                                             drop=False).transpose()

        if iichr == 0:
            fOut = h5py.File(
                path_data + '/' + folder_qtl + '_' + feature_report + '_' +
                output_file + '.h5', 'w')
            iichr = 1
        else:
            fOut = h5py.File(
                path_data + '/' + folder_qtl + '_' + feature_report + '_' +
                output_file + '.h5', 'r+')

        # for each report_feature  create h5 groups
        count = 0
        for ifea, report_feature in enumerate(
                np.unique(list(ffea_report_feature))):
            #            print (report_feature)

            #select features for which qtl was computed
            features = np.intersect1d(
                np.array(ffea_report_feature[report_feature].transpose()
                         ['feature_id']), frezkeys)
            if len(features) >= 1:

                fg = fOut.create_group(report_feature)

                pv = np.array([frez[f][p_value_field] for f in features])
                for i, ppv in enumerate(pv):
                    ppv[ppv != ppv] = 1
                pv2 = np.array([frez[f][p_value_raw_field] for f in features])
                for i, ppv in enumerate(pv2):
                    ppv[ppv != ppv] = 1
                beta = np.array([frez[f]['beta'] for f in features])
                for i, b in enumerate(beta):
                    b[b != b] = 1
                beta_se = np.array([frez[f]['beta_se'] for f in features])
                for i, b in enumerate(beta_se):
                    b[b != b] = 1
                snp_id = np.array([frez[f]['snp_id'] for f in features])
                position = np.array([
                    fsnp[snp_id[indf].astype('U')].transpose()['position']
                    for indf, f in enumerate(features)
                ])
                for i, p in enumerate(position):
                    p[p != p] = 1

                fgm = fg.create_group('metadata')
                for key in ffea_feature[features[0]].keys():

                    if isinstance(ffea_feature[features[0]][key], int):
                        fgm.create_dataset(key,
                                           data=np.array([
                                               ffea_feature[f][key]
                                               for f in features
                                           ]))
                    else:
                        fgm.create_dataset(key,
                                           data=np.array([
                                               ffea_feature[f][key]
                                               for f in features
                                           ]).astype('S'))

                fgd = fg.create_group('data')
                fgd.create_dataset('features', data=features.astype('S'))
                fgdp = fgd.create_group(p_value_field)
                for indf, f in enumerate(features):
                    fgdp.create_dataset(f, data=pv[indf])

                fgdp2 = fgd.create_group('p_value_raw')
                for indf, f in enumerate(features):
                    fgdp2.create_dataset(f, data=pv2[indf])

                fgdb = fgd.create_group('beta')
                for indf, f in enumerate(features):
                    fgdb.create_dataset(f, data=beta[indf])
                fgdbse = fgd.create_group('beta_se')
                for indf, f in enumerate(features):
                    fgdbse.create_dataset(f, data=beta_se[indf])
                fgdpo = fgd.create_group('position')
                for indf, f in enumerate(features):
                    fgdpo.create_dataset(f, data=position[indf].astype(int))
                fgds = fgd.create_group('snp_id')
                for indf, f in enumerate(features):
                    fgds.create_dataset(f, data=snp_id[indf])

                fgs = fg.create_group('summary_data')
                fgs.create_dataset('min_p_value',
                                   data=np.nanmin(np.hstack(pv))[None])
                fgs.create_dataset('min_p_value_beta',
                                   data=np.hstack(beta)[np.nanargmin(
                                       np.hstack(pv))][None])
                fgs.create_dataset('min_p_value_beta_se',
                                   data=np.hstack(beta_se)[np.nanargmin(
                                       np.hstack(pv))][None])

                p_bonf = np.nanmin(
                    local_adjustment((pv), method=local_adjustment_method))
                if p_bonf > 1: p_bonf = np.array(1)
                fgs.create_dataset('min_p_value_local_adjusted',
                                   data=p_bonf[None])

                minfeatureindex = np.argmin(
                    [np.nanmin(ppv) * len(ppv) for ppv in pv])
                fgs.create_dataset(
                    'min_p_value_feature_id',
                    data=np.array(
                        fgm['feature_id'][minfeatureindex].astype('S'))[None])

                min_snp_id = frez[features[minfeatureindex]]['snp_id'][
                    np.nanargmin(pv[minfeatureindex])].astype('U')
                fgs.create_dataset('min_p_value_snp_id',
                                   data=np.array(min_snp_id).astype('S')[None])
                fgs.create_dataset('min_p_value_position',
                                   data=np.array(
                                       fsnp[min_snp_id]['position'])[None])

                count += 1

        frez.close()
        fOut.close()
Example #51
0
def merge_all(distances):
    '''
    calculate the closest cluster for each cluster in distances
    merge each cluster with its closest one
    merge clusters that share clusters until no sharers left
    '''

    # get the closest cluster for each cluster
    # generates a Series with pointer lists
    closest_clusters = pd.Series(index=range(len(distances)), dtype='object')

    for i in distances.index:
        target_index = np.nanargmin(distances[i]).item()
        # only one value now, but we will add values later
        closest_clusters[i] = list()
        closest_clusters[i].append(target_index)

    cluster_groups = closest_clusters

    # generate initial groups by adding the index to the target
    for i, group in cluster_groups.iteritems():
        # first value is the initial closest cluster
        target = group[0]
        cluster_groups[target].append(i)

    # merge until there are only loners and groups with a pointer loop
    # a loner is a cluster that has a target minimum distance cluster that does not point back to the loner
    # a pointer loop is when two cluster point towards each other, even over multiple cluster between
    # if a loner points to a loner the dependencies are pushed up until they are in a pointer loop group
    finished = False

    while not finished:
        finished = True

        # merge dependencies
        for i, group in cluster_groups.iteritems():

            # loner check
            if len(group) > 1:
                # first value is the initial closest cluster
                target = group[0]
                # rest of the values are pointers added by dependent groups
                pointers = group[1:]

                # check whether this is a dependent group without a pointer loop
                if (target not in pointers):
                    # still dependent groups left, we need to iterate at least one more time
                    finished = False
                    # add own index to target
                    cluster_groups[target].append(i)

                    # sanity check whether looping is required
                    if (type(pointers) is list):
                        # multiple entries we can loop
                        for x in pointers:
                            if (x not in cluster_groups[target]):
                                cluster_groups[target].append(x)

                    else:
                        print(pointers)
                        cluster_groups[target].append(pointers[0])

                    # dependent group is spent, create loner
                    cluster_groups[i] = list()
                    cluster_groups[i].append(target)

    # clear loners
    for i, group in cluster_groups.iteritems():
        # loner check
        if (len(group) <= 1):
            target = group[0]
            # sanity check
            if target in cluster_groups.index:
                if len(cluster_groups[target]) > 1:
                    # loner points to pointer loop group
                    # push own index to target
                    cluster_groups[target].append(i)
            # drop loner
            cluster_groups = cluster_groups.drop(i)

    # dress up the group list
    # sort it and remove duplicates
    merged_groups = list()

    for i, group in cluster_groups.iteritems():
        # add own index
        temp = group
        temp.append(i)
        # generate sorted list without duplicates
        temp = sorted(list(set(temp)))
        merged_groups.append(temp)

    merged_groups = sorted(merged_groups)

    # merge connected groups and remove duplicates
    for i, group_a in enumerate(merged_groups):

        for k, group_b in enumerate(merged_groups):
            # sanity check to not operate on the same list
            if k is not i:
                for x in group_a:
                    if x in set(group_b):
                        merged_groups[i] = list(
                            set(group_a).union(set(group_b)))
                        # both will point to the same list
                        merged_groups[k] = merged_groups[i]

    # sort all cluster groups and don't add duplicates
    clean = list()
    for group in merged_groups:
        sgroup = sorted(group)
        # duplicate check
        if sgroup not in clean:
            clean.append(sgroup)
    clean = sorted(clean)

    # print cluster count information
    print("total clusters: " +
          str(len(list(set(list(itertools.chain.from_iterable(clean)))))))
    print("total cluster groups: " + str(len(clean)))

    return clean
Example #52
0
    def check_history_consistency(self, start: OptimizerResult):

        # TODO other implementations
        assert isinstance(start.history, (CsvHistory, MemoryHistory))

        def xfull(x_trace):
            return self.problem.get_full_vector(x_trace,
                                                self.problem.x_fixed_vals)

        if isinstance(start.history, CsvHistory):
            it_final = np.nanargmin(start.history.get_fval_trace())
            if isinstance(it_final, np.ndarray):
                it_final = it_final[0]
            it_start = int(
                np.where(
                    np.logical_not(np.isnan(
                        start.history.get_fval_trace())))[0][0])
            assert np.allclose(xfull(start.history.get_x_trace(it_start)),
                               start.x0)
            assert np.allclose(xfull(start.history.get_x_trace(it_final)),
                               start.x)
            assert np.isclose(start.history.get_fval_trace(it_start),
                              start.fval0)

        funs = {
            FVAL:
            self.obj.get_fval,
            GRAD:
            self.obj.get_grad,
            HESS:
            self.obj.get_hess,
            RES:
            self.obj.get_res,
            SRES:
            self.obj.get_sres,
            CHI2:
            lambda x: res_to_chi2(self.obj.get_res(x)),
            SCHI2:
            lambda x: sres_to_schi2(*self.obj(
                x, (
                    0,
                    1,
                ), pypesto.objective.constants.MODE_RES))
        }
        for var, fun in funs.items():
            for it in range(5):
                x_full = xfull(start.history.get_x_trace(it))
                val = getattr(start.history, f'get_{var}_trace')(it)
                if not getattr(self.history_options, f'trace_record_{var}',
                               True):
                    assert np.isnan(val)
                    continue
                if np.all(np.isnan(val)):
                    continue
                if var in [FVAL, CHI2]:
                    # note that we can expect slight deviations here since
                    # this fval/chi2 may be computed without sensitivities
                    # while the result here may be computed with with
                    # sensitivies activated. If this fails to often,
                    # increase atol/rtol
                    assert np.isclose(val, fun(x_full), rtol=1e-3,
                                      atol=1e-4), var
                elif var in [RES]:
                    # note that we can expect slight deviations here since
                    # this res is computed without sensitivities while the
                    # result here may be computed with with sensitivies
                    # activated. If this fails to often, increase atol/rtol
                    assert np.allclose(val, fun(x_full), rtol=1e-3,
                                       atol=1e-4), var
                elif var in [SRES]:
                    assert np.allclose(
                        val,
                        fun(x_full)[:, self.problem.x_free_indices],
                    ), var
                elif var in [GRAD, SCHI2]:
                    assert np.allclose(
                        val,
                        self.problem.get_reduced_vector(fun(x_full)),
                    ), var
                elif var in [HESS]:
                    assert np.allclose(
                        val,
                        self.problem.get_reduced_matrix(fun(x_full)),
                    ), var
                else:
                    raise RuntimeError('missing test implementation')
Example #53
0
def main(opt):
    ctx = mx.gpu() if opt.use_gpu else mx.cpu()
    testclasspaths = []
    testclasslabels = []
    print('loading test files')
    filename = '_testlist.txt'
    with open(opt.dataset + "_" + opt.expname + filename, 'r') as f:
        for line in f:
            testclasspaths.append(line.split(' ')[0])
            if int(line.split(' ')[1]) == -1:
                testclasslabels.append(0)
            else:
                testclasslabels.append(1)
    neworder = range(len(testclasslabels))
    neworder = shuffle(neworder)

    c = list(zip(testclasslabels, testclasspaths))
    print('shuffling')
    random.shuffle(c)
    im_mean = mean_image.load_mean()
    im_mean = im_mean.broadcast_to(
        (opt.batch_size, np.shape(im_mean)[0], np.shape(im_mean)[1],
         np.shape(im_mean)[2])
    )  #im_mean = nd.transpose(im_mean, (2, 0, 1))#testclasslabels, testclasspaths = zip(*c)
    #testclasslabels = testclasslabels[1:5000]
    #testclasspaths = testclasspaths[1:5000]
    ltnt = 4096
    print('loading pictures')
    test_data = load_image.load_test_images(testclasspaths, testclasslabels,
                                            opt.batch_size, opt.img_wd,
                                            opt.img_ht, ctx, opt.noisevar)
    print('picture loading done')
    netEn, netDe, netD, netD2, netDS = set_network(opt.depth, ctx, 0, 0,
                                                   opt.ndf, opt.ngf,
                                                   opt.append)
    netEn.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_En.params',
                      ctx=ctx)
    netDe.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_De.params',
                      ctx=ctx)
    netD.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                     '_D.params',
                     ctx=ctx)
    netD2.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_D2.params',
                      ctx=ctx)
    netDS.load_params('checkpoints/' + opt.expname + '_' + str(opt.epochs) +
                      '_SD.params',
                      ctx=ctx)
    print('Model loading done')
    lbllist = []
    scorelist1 = []
    scorelist2 = []
    scorelist3 = []
    scorelist4 = []
    test_data.reset()
    count = 0
    for batch in (test_data):
        count += 1
        print(str(count))  #, end="\r")
        real_in = batch.data[0].as_in_context(ctx) - im_mean.as_in_context(ctx)
        real_out = batch.data[1].as_in_context(ctx) - im_mean.as_in_context(
            ctx)
        lbls = batch.label[0].as_in_context(ctx)
        code = netEn((real_out))
        code = code + nd.random.normal(
            loc=0, scale=0.002, shape=code.shape, ctx=ctx)
        outnn = (netDe(code))
        out_concat = nd.concat(real_out, outnn, dim=1) if opt.append else outnn
        output4 = nd.mean((netD(out_concat)), (1, 3, 2)).asnumpy()
        code = netEn(real_in)
        #code=codet+nd.random.normal(loc=0, scale=0.0000001, shape=code.shape,ctx=ctx)
        #code2=codet+nd.random.normal(loc=0, scale=0.000001, shape=code.shape,ctx=ctx)
        #eq_code = heq(code.asnumpy(),2)
        #code = nd.array(eq_code, ctx=ctx)
        out = netDe(code)
        #out2 = netDe(code2)
        out_concat = nd.concat(real_in, out, dim=1) if opt.append else out
        output = netD(out_concat)  #Denoised image
        output3 = nd.mean((out - real_out)**2,
                          (1, 3, 2)).asnumpy()  #denoised-real
        output = nd.mean(output, (1, 3, 2)).asnumpy()
        out_concat = nd.concat(real_out, real_out,
                               dim=1) if opt.append else real_out

        output2 = netDS(netDe(code))  #Image with no noise
        output2 = nd.mean(output2, (1, 3, 2)).asnumpy()
        lbllist = lbllist + list(lbls.asnumpy())
        scorelist1 = scorelist1 + list(output)
        scorelist2 = scorelist2 + list(output2)
        scorelist3 = scorelist3 + list(output3)
        scorelist4 = scorelist4 + list(output4)

        fake_img1 = nd.concat(real_in[0], real_out[0], out[0], outnn[0], dim=1)
        fake_img2 = nd.concat(real_in[1], real_out[1], out[1], outnn[1], dim=1)
        fake_img3 = nd.concat(real_in[2], real_out[2], out[2], outnn[2], dim=1)
        fake_img4 = nd.concat(real_in[3], real_out[3], out[3], outnn[3], dim=1)
        fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
        #print(np.shape(fake_img))
        visual.visualize(fake_img)
        plt.savefig('outputs/T_' + opt.expname + '_' + str(count) + '.png')
    if not opt.isvalidation:

        fpr, tpr, _ = roc_curve(lbllist, scorelist1, 1)
        roc_auc1 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist2, 1)
        roc_auc2 = auc(fpr, tpr)
        fpr, tpr, _ = roc_curve(lbllist, scorelist3, 1)
        roc_auc3 = auc(fpr, tpr)
        EER = fpr[np.nanargmin(np.absolute((1 - tpr - fpr)))]
        fpr, tpr, _ = roc_curve(lbllist, scorelist4, 1)
        roc_auc4 = auc(fpr, tpr)
        plt.gcf().clear()
        plt.clf()
        sns.set(color_codes=True)
        posscores = [
            scorelist3[i] for i, v in enumerate(lbllist) if int(v) == 1
        ]
        negscores = [
            scorelist3[i] for i, v in enumerate(lbllist) if int(v) == 0
        ]
        #sns.distplot(posscores, hist=False, label="Known Classes" ,rug=True)
        sns.kdeplot(posscores, label="Known Classes")
        sns.kdeplot(negscores, label="Unnown Classes")
        #plt.hold()
        #sns.distplot(negscores, hist=False, label = "Unknown Classes", rug=True);
        plt.legend()
        plt.savefig('outputs/matdist_' + opt.expname + '_.png')

        plt.gcf().clear()
        inputT = nd.zeros((ltnt, ltnt, 1, 1), ctx=ctx)
        for i in range(0, ltnt):
            inputT[i, i, :, :] = -1
        out = netDe(inputT)
        count = 0
        for i in range(int(math.ceil(math.sqrt(ltnt)))):
            for j in range(int(math.ceil(math.sqrt(ltnt)))):
                if count < ltnt:
                    plt.subplot(math.ceil(math.sqrt(ltnt)),
                                math.ceil(math.sqrt(ltnt)), count + 1)
                    plt.imshow(
                        ((out[count].asnumpy().transpose(1, 2, 0) + 1.0) *
                         127.5).astype(np.uint8))
                    plt.axis('off')
                count += 1
        plt.savefig('outputs/atoms_' + opt.expname + '_.png')
        plt.gcf().clear()
        plt.clf()
        print(EER)
        return ([roc_auc1, roc_auc2, roc_auc3, roc_auc4])
    else:
        return ([0, 0, 0, 0])
    fakecode = nd.random_normal(loc=0,
                                scale=1,
                                shape=(16, 4096, 1, 1),
                                ctx=ctx)
    out = netDe(fakecode)
    fake_img1 = nd.concat(out[0], out[1], out[2], out[3], dim=1)
    fake_img2 = nd.concat(out[7], out[6], out[5], out[4], dim=1)
    fake_img3 = nd.concat(out[8], out[9], out[10], out[11], dim=1)
    fake_img4 = nd.concat(out[15], out[14], out[13], out[12], dim=1)
    fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img4, dim=2)
    #print(np.shape(fake_img))
    visual.visualize(fake_img)
    plt.savefig('outputs/fakes_' + opt.expname + '_.png')
def add_step(data, jpos, means, variances, steps, lamb=0.1, gamma0=0.5):
    ''' Try adding a negative or positive step to the steps already found. Only the part of the trace
    before the penultimate step will be considered.
    '''
    mb = means[0]
    vb = variances[0]
    mf = means[1] - means[0]
    vf = variances[1] - variances[0]
    if vf < 0:
        vf = variances[1]
    sz = len(data)

    # initial sic
    sicmin = posterior_single(data, jpos, means, variances, steps)
    stp, ct = np.unique(np.abs(steps), return_counts=True)
    # add one to steps with zero occupancy
    ct[0] += 1
    step_out = steps
    jpos_out = jpos

    # build arrays for squared diff,  variance and length
    i_in = np.cumsum(np.hstack((0, steps)))
    steploc = np.hstack((0, jpos, sz))
    diffar = np.tile(
        np.array(list(map(sum, (np.split(data, jpos) - i_in * mf - mb)**2))),
        [sz - jpos[1], 1])
    diffar = np.hstack((diffar, np.zeros([sz - jpos[1], 1])))
    varphi = np.tile(np.hstack((i_in * vf + vb, 0)), [sz - jpos[1], 1])
    nphi = np.tile(np.hstack((np.diff(steploc), 0)), [sz - jpos[1], 1])

    sics = []
    steppos = []
    for stp in (-1, 1):
        for I in range(2, len(steploc) - 1):
            # length
            stepl = int(steploc[I + 1] - steploc[I])
            if I < len(steploc) - 2:
                # shift values after current range by one and recalculate with i  + / -  1
                try:
                    dd = np.array(
                        list(
                            map(sum, (np.split(data[steploc[I + 1]:],
                                               jpos[I + 1:] - steploc[I + 1]) -
                                      (i_in[I + 1:] + stp) * mf - mb)**2)))
                except ValueError:
                    dd = np.array(
                        list(
                            map(sum, (np.split(data[steploc[I + 1]:],
                                               jpos[I + 1:] - steploc[I + 1]) -
                                      np.expand_dims(
                                          (i_in[I + 1:] + stp) * mf - mb,
                                          axis=1))**2)))
                diffar[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                       I + 2:] = np.tile(dd, [stepl, 1])
                varphi[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                       I + 2:] = np.tile((i_in[I + 1:] + stp) * vf + vb,
                                         [stepl, 1])
                nphi[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                     I + 2:] = np.tile(np.diff(steploc[I + 1:]), [stepl, 1])

            # diffs under the diagonal (before added step)
            dar = np.tile(data[steploc[I]:steploc[I + 1]], [stepl, 1])
            dar[np.triu(np.ones([stepl, stepl]), 1).astype(
                bool)] = i_in[I] * mf + mb  # diff values will be zeros
            diffar[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1], I] = np.sum(
                (dar - i_in[I] * mf - mb)**2, 1)

            # diffs above diagonal (after added step)
            dar = np.tile(data[steploc[I]:steploc[I + 1]], [stepl, 1])
            dar[np.tril(np.ones([stepl, stepl]),
                        0).astype(bool)] = (i_in[I] + stp) * mf + mb
            diffar[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                   I + 1] = np.sum((dar - (i_in[I] + stp) * mf - mb)**2, 1)

            # varphi for the current range
            varphi[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                   I] = i_in[I] * vf + vb
            varphi[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                   I + 1] = (i_in[I] + stp) * vf + vb

            # length for current range
            nphi[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                 I] = np.arange(stepl) + 1
            nphi[steploc[I] - jpos[1]:steploc[I + 1] - jpos[1],
                 I + 1] = stepl - np.arange(stepl) - 1

        # SIC calculation
        m = np.sum(np.abs(steps)) + 1
        K = len(jpos) + 1
        # This sometimes throws warnings invalid value in log
        sic = np.sum(nphi * np.log(varphi) + diffar / varphi, 1)
        sic += 2 * (-K * np.log(lamb) - np.log(
            factorial(m - K) * factorial(K) / factorial(m - 1)) +
                    np.sum(np.log(factorial(ct))))
        sic += 2 * gamma0 * (m - K + 1) / K + np.log(m - K + 2) + np.log(
            m - K + 1) - np.log(m - K + 2 - (m - K + 1) * np.exp(-gamma0 / K))

        # exclude positions around existing steps and edges
        jignore = np.ravel(np.tile(jpos, [5, 1]).T +
                           np.arange(-2, 3)) - jpos[1]
        jignore = jignore[(jignore > 0) * (jignore < len(sic) - 2)]
        ind = np.arange(len(sic) - 2)
        ind = np.delete(ind, jignore)

        sic = sic[ind]
        sics.append(np.min(sic))
        steppos.append(ind[np.argmin(sic)] + jpos[1] + 1)

    # nanmin in case of negative fluorophores,  maybe can be done more elegantly
    # sometimes warns about all nan axis
    if np.nanmin(sics) < sicmin:
        # found new step,  add it
        sicmin = np.nanmin(sics)
        newstep = steppos[np.nanargmin(sics)]
        stepsign = np.nanargmin(sics) * 2 - 1
        insertpos = np.max(np.where(jpos < newstep)[0]) + 1
        step_out = np.hstack((steps[:insertpos], stepsign, steps[insertpos:]))
        jpos_out = sorted(np.hstack((jpos, newstep)))

        # calculate variances and means
        variances = [np.var(ar) for ar in np.split(data, jpos_out)]
        means = [np.mean(ar) for ar in np.split(data, jpos_out)]

    return sicmin, jpos_out, step_out, means, variances
Example #55
0
    def test_lfw(self, set='test', model='ssdm_resnet', visualize=True):
        if set is 'train':
            pairfile = 'pairsDevTrain.txt'
        else:
            pairfile = 'pairsDevTest.txt'
        lfw_path = DeepFaceConfs.get()['dataset']['lfw']
        path = os.path.join(lfw_path, pairfile)
        with open(path, 'r') as f:
            lines = f.readlines()[1:]

        pairs = []
        for line in lines:
            elms = line.split()
            if len(elms) == 3:
                pairs.append((elms[0], int(elms[1]), elms[0], int(elms[2])))
            elif len(elms) == 4:
                pairs.append((elms[0], int(elms[1]), elms[2], int(elms[3])))
            else:
                logger.warning('line should have 3 or 4 elements, line=%s' %
                               line)

        detec = FaceDetectorDlib.NAME
        if model == 'baseline':
            recog = FaceRecognizerVGG.NAME
            just_name = 'vgg'
        elif model == 'baseline_resnet':
            recog = FaceRecognizerResnet.NAME
            just_name = 'resnet'
        elif model == 'ssdm_resnet':
            recog = FaceRecognizerResnet.NAME
            just_name = 'resnet'
            detec = 'detector_ssd_mobilenet_v2'
        else:
            raise Exception('invalid model name=%s' % model)

        logger.info('pair length=%d' % len(pairs))
        test_result = []  # score, label(1=same)
        for name1, idx1, name2, idx2 in tqdm(pairs):
            img1_path = os.path.join(lfw_path, name1,
                                     '%s_%04d.jpg' % (name1, idx1))
            img2_path = os.path.join(lfw_path, name2,
                                     '%s_%04d.jpg' % (name2, idx2))
            img1 = cv2.imread(img1_path, cv2.IMREAD_COLOR)
            img2 = cv2.imread(img2_path, cv2.IMREAD_COLOR)

            if img1 is None:
                logger.warning('image not read, path=%s' % img1_path)
            if img2 is None:
                logger.warning('image not read, path=%s' % img2_path)

            result1 = self.run(image=img1,
                               detector=detec,
                               recognizer=recog,
                               visualize=False)
            result2 = self.run(image=img2,
                               detector=detec,
                               recognizer=recog,
                               visualize=False)

            if len(result1) == 0:
                logger.warning('face not detected, name=%s(%d)! %s(%d)' %
                               (name1, idx1, name2, idx2))
                test_result.append((0.0, name1 == name2))
                continue
            if len(result2) == 0:
                logger.warning('face not detected, name=%s(%d) %s(%d)!' %
                               (name1, idx1, name2, idx2))
                test_result.append((0.0, name1 == name2))
                continue

            feat1 = result1[0].face_feature
            feat2 = result2[0].face_feature
            similarity = feat_distance_cosine(feat1, feat2)
            test_result.append((similarity, name1 == name2))

        # calculate accuracy TODO
        accuracy = sum([
            label ==
            (score > DeepFaceConfs.get()['recognizer'][just_name]['score_th'])
            for score, label in test_result
        ]) / float(len(test_result))
        logger.info('accuracy=%.8f' % accuracy)

        # ROC Curve, AUC
        tps = []
        fps = []
        accuracy0 = []
        accuracy1 = []
        acc_th = []

        for th in range(0, 100, 5):
            th = th / 100.0
            tp = 0
            tn = 0
            fp = 0
            fn = 0
            for score, label in test_result:
                if score >= th and label == 1:
                    tp += 1
                elif score >= th and label == 0:
                    fp += 1
                elif score < th and label == 0:
                    tn += 1
                elif score < th and label == 1:
                    fn += 1
            tpr = tp / (tp + fn + 1e-12)
            fpr = fp / (fp + tn + 1e-12)
            tps.append(tpr)
            fps.append(fpr)
            accuracy0.append(tn / (tn + fp + 1e-12))
            accuracy1.append(tp / (tp + fn + 1e-12))
            acc_th.append(th)

        fpr, tpr, thresh = roc_curve([x[1] for x in test_result],
                                     [x[0] for x in test_result])
        fnr = 1 - tpr
        eer = fnr[np.nanargmin(np.absolute((fnr - fpr)))]
        logger.info('1-eer=%.4f' % (1.0 - eer))

        with open('./etc/test_lfw.pkl', 'rb') as f:
            results = pickle.load(f)

        if visualize in [True, 'True', 'true', 1, '1']:
            fig = plt.figure()
            a = fig.add_subplot(1, 2, 1)
            plt.title('Experiment on LFW')
            plt.plot(fpr, tpr,
                     label='%s(%.4f)' % (model, 1 - eer))  # TODO : label

            for model_name in results:
                if model_name == model:
                    continue
                fpr_prev = results[model_name]['fpr']
                tpr_prev = results[model_name]['tpr']
                eer_prev = results[model_name]['eer']
                plt.plot(fpr_prev,
                         tpr_prev,
                         label='%s(%.4f)' % (model_name, 1 - eer_prev))

            plt.xlim([0.0, 1.0])
            plt.ylim([0.0, 1.05])
            plt.xlabel('False Positive Rate')
            plt.ylabel('True Positive Rate')
            a.legend()
            a.set_title('Receiver operating characteristic')

            a = fig.add_subplot(1, 2, 2)
            plt.plot(accuracy0, acc_th, label='Accuracy_diff')
            plt.plot(accuracy1, acc_th, label='Accuracy_same')
            plt.xlim([0.0, 1.0])
            plt.ylim([0.0, 1.05])
            a.legend()
            a.set_title('%s : TP, TN' % model)

            fig.savefig('./etc/roc.png', dpi=300)
            plt.show()
            plt.draw()

        with open('./etc/test_lfw.pkl', 'wb') as f:
            results[model] = {
                'fpr': fpr,
                'tpr': tpr,
                'acc_th': acc_th,
                'accuracy0': accuracy0,
                'accuracy1': accuracy1,
                'eer': eer
            }
            pickle.dump(results, f, pickle.HIGHEST_PROTOCOL)

        return 1.0 - eer
n = inputData['n']
R = inputData['R']
epsilon = inputData['epsilon']
x0 = inputData['x']
y0 = inputData['y']

phi = data['phi']
phiCount = phi.size
Tphi = data['Tphi']
frequencies = data['frequencies']
countf = frequencies.size
Rk = data['Rk']

S = 2 * pi / phiCount * Rk * np.sum(Tphi, axis=1)
print(np.nanargmax(S))  # = 840
print(np.nanargmin(S[100:]) + 100)
print(np.nanargmax(S[900:]) + 900)

mpl.rcParams['mathtext.fontset'] = 'stix'
mpl.rcParams['font.family'] = 'STIXGeneral'
mpl.rcParams['legend.fontsize'] = 'medium'
mpl.rcParams['axes.labelsize'] = 'large'

plt.figure(figsize=(7, 3))
plt.plot(frequencies, S)
plt.ylim(top=10, bottom=5e-4)
plt.yscale("log")
plt.xlabel(r"$f$")
plt.ylabel(r"$S$")
plt.title(r"1 hexagon, $R=0.45$, $\epsilon = (1.1 \pm 0.1\mathrm{i})^2$")
    def decode(self, bits_in, debug=0):
        len_trellis = (len(bits_in) / 6)  #+1
        state_prob = [1] + [0] * 63
        prev_state = numpy.zeros((64, len_trellis + 1))
        acc_err = numpy.empty((64, len_trellis + 1))
        acc_err[:] = numpy.nan
        acc_err[0][0] = 0

        for m in range(0, len_trellis):
            #print(self.state_prop)
            #print( bits_in[0+m*6:6+m*6] )

            for n in range(0, 64):
                #print( state_prob[n])
                if state_prob[n] != 0:
                    b_0 = self.calc_error(n, bits_in[0 + m * 6:6 + m * 6], 0)
                    b_1 = self.calc_error(n, bits_in[0 + m * 6:6 + m * 6], 1)

                    next_state = self.trans_0[n]
                    #if debug:
                    #if acc_err[n][m] == 0:
                    #print( str(int(m)) + ' State ' + str(n) + ' 0:' + str( int(b_0) ) + ' 1:' + str(int(b_1) )  )
                    #self.calc_error_dbug(n,bits_in[0+m*6:6+m*6], 0)
                    #self.calc_error_dbug(n,bits_in[0+m*6:6+m*6], 1)
                    if (acc_err[next_state][m + 1] > acc_err[n][m] +
                            b_0) or numpy.isnan(acc_err[next_state][m + 1]):
                        if numpy.isnan(acc_err[n][m]):
                            acc_err[next_state][m + 1] = b_0
                        else:
                            acc_err[next_state][m + 1] = acc_err[n][m] + b_0
                        prev_state[next_state][m + 1] = n

                    next_state = self.trans_1[n]
                    if (acc_err[next_state][m + 1] > acc_err[n][m] +
                            b_1) or numpy.isnan(acc_err[next_state][m + 1]):
                        if numpy.isnan(acc_err[n][m]):
                            acc_err[next_state][m + 1] = b_1
                        else:
                            acc_err[next_state][m + 1] = acc_err[n][m] + b_1
                        prev_state[next_state][m + 1] = n
            state_prob = numpy.dot(state_prob, self.trans_prob)

        # Pfad mit kleinstem Fehler suchen
        #print( [x[len_trellis] for x in acc_err] )
        best_res = numpy.nanargmin([x[len_trellis] for x in acc_err])
        if debug:
            print('Bester Pfad : ' + str(best_res) + ' Fehler: ' +
                  str(acc_err[best_res][len_trellis]))

        #Traceback
        bits_out = numpy.zeros(len_trellis)

        state = best_res
        #print( 'Trace: ' + str(state))
        for n in range(0, len_trellis):
            #print(self.trans_0[int(prev_state[state][int(len_trellis-n)])])
            if self.trans_0[int(prev_state[int(state)][int(len_trellis -
                                                           n)])] == state:
                bits_out[len_trellis - 1 - n] = int(0)
            else:
                bits_out[len_trellis - 1 - n] = int(1)
            state = prev_state[int(state)][int(len_trellis - n)]
            #print( 'Trace: ' + str(state))
        return bits_out
Example #58
0
 def ref_impl(a):
     return np.nanargmin(a)
        def asyncCalc(refDatas, inpDatas):
            if len(refDatas) != 3 or len(inpDatas) != 3:
                raise ValueError(
                    'The length of both refDatas and inpDatas must be three, but got ref:{0} and inp:{1}'
                    .format(len(refDatas), len(inpDatas)))
            R, I = refDatas[0].shape[0], inpDatas[0].shape[0]

            localCost1 = _asyncLocalCost(refDatas[1], refDatas[0], inpDatas[1],
                                         inpDatas[0], limits, 2)
            localCost3 = _asyncLocalCost(refDatas[1], refDatas[2], inpDatas[1],
                                         inpDatas[2], limits, 2)
            matchingCost1 = np.zeros((R, I, 2 * limits + 1))
            matchingCost3 = np.zeros((R, I, 2 * limits + 1))
            matchingCost1[0, :, :] = localCost1[0, :, :]
            matchingCost3[0, :, :] = localCost3[0, :, :]

            baseArgs = np.zeros((R, I, 2 * limits + 1))
            baseArgs[0, :, :] = np.nan
            for r in range(1, R):

                for index, epsilon in enumerate(range(-limits, limits + 1)):
                    # i = 0
                    matchingCost1[r, 0,
                                  index] = localCost1[r, 0, index] + np.min(
                                      matchingCost1[r - 1, 0,
                                                    max(epsilon, 0):index + 1])
                    matchingCost3[r, 0,
                                  index] = localCost3[r, 0, index] + np.min(
                                      matchingCost3[r - 1, 0,
                                                    max(epsilon, 0):index + 1])
                    #baseArgs[r, 0, index] = 0
                    #baseArgs[r - 1, 0, index] = 0

                    # i = 1
                    cumulativeCost1 = np.array([
                        np.min(matchingCost1[r - 1, 1,
                                             max(epsilon, 0):index + 1]),
                        np.min(matchingCost1[r - 1, 0,
                                             max(epsilon + 1, 0):index + 2])
                    ])
                    cumulativeCost3 = np.array([
                        np.min(matchingCost3[r - 1, 1,
                                             max(epsilon, 0):index + 1]),
                        np.min(matchingCost3[r - 1, 0,
                                             max(epsilon + 1, 0):index + 2])
                    ])
                    arg = np.nanargmin(cumulativeCost1 + cumulativeCost3,
                                       axis=0)
                    matchingCost1[
                        r, 1,
                        index] = localCost1[r, 1, index] + cumulativeCost1[arg]
                    matchingCost3[
                        r, 1,
                        index] = localCost3[r, 1, index] + cumulativeCost3[arg]
                    baseArgs[r, 1, index] = -arg
                    #baseArgs[r - 1, 1, index] = -arg

                    # i = 2...
                    cumulativeCost1 = np.array([
                        np.min(matchingCost1[r - 1, 2:,
                                             max(epsilon, 0):index + 1],
                               axis=1),
                        np.min(matchingCost1[r - 1, 1:-1,
                                             max(epsilon + 1, 0):index + 2],
                               axis=1),
                        np.min(matchingCost1[r - 1, :-2,
                                             max(epsilon + 2, 0):index + 3],
                               axis=1)
                    ])
                    cumulativeCost3 = np.array([
                        np.min(matchingCost3[r - 1, 2:,
                                             max(epsilon, 0):index + 1],
                               axis=1),
                        np.min(matchingCost3[r - 1, 1:-1,
                                             max(epsilon + 1, 0):index + 2],
                               axis=1),
                        np.min(matchingCost3[r - 1, :-2,
                                             max(epsilon + 2, 0):index + 3],
                               axis=1)
                    ])
                    arg = np.nanargmin(cumulativeCost1 + cumulativeCost3,
                                       axis=0)
                    matchingCost1[r, 2:,
                                  index] = localCost1[r, 2:, index] + np.diag(
                                      cumulativeCost1[arg])
                    matchingCost3[r, 2:,
                                  index] = localCost3[r, 2:, index] + np.diag(
                                      cumulativeCost3[arg])
                    baseArgs[r, 2:, index] = -arg
                    #baseArgs[r - 1, 2:, index] = -arg

            # calculate total matching cost
            totalMatchingCosts = np.ones(I) * np.inf
            for index, epsilon in enumerate(range(-limits, limits + 1)):
                # i = 0
                totalMatchingCosts[0] = np.min(matchingCost1[R - 1, 0, max(epsilon, 0):index + 1]) + \
                                        np.min(matchingCost3[R - 1, 0, max(epsilon, 0):index + 1])
                #baseArgs[R, 0, index] = 0
                #baseArgs[R - 1, 0, index] = 0

                # i = 1
                cumulativeCost1 = np.array([
                    np.min(matchingCost1[R - 1, 1,
                                         max(epsilon, 0):index + 1]),
                    np.min(matchingCost1[R - 1, 0,
                                         max(epsilon + 1, 0):index + 2])
                ])
                cumulativeCost3 = np.array([
                    np.min(matchingCost3[R - 1, 1,
                                         max(epsilon, 0):index + 1]),
                    np.min(matchingCost3[R - 1, 0,
                                         max(epsilon + 1, 0):index + 2])
                ])
                arg = np.nanargmin(cumulativeCost1 + cumulativeCost3, axis=0)
                totalMatchingCosts[
                    1] = cumulativeCost1[arg] + cumulativeCost3[arg]
                #baseArgs[R, 1, index] = -arg
                #baseArgs[R - 1, 1, index] = -arg

                # i >= 2
                cumulativeCost1 = np.array([
                    np.min(matchingCost1[R - 1, 2:,
                                         max(epsilon, 0):index + 1],
                           axis=1),
                    np.min(matchingCost1[R - 1, 1:-1,
                                         max(epsilon + 1, 0):index + 2],
                           axis=1),
                    np.min(matchingCost1[R - 1, :-2,
                                         max(epsilon + 2, 0):index + 3],
                           axis=1)
                ])
                cumulativeCost3 = np.array([
                    np.min(matchingCost3[R - 1, 2:,
                                         max(epsilon, 0):index + 1],
                           axis=1),
                    np.min(matchingCost3[R - 1, 1:-1,
                                         max(epsilon + 1, 0):index + 2],
                           axis=1),
                    np.min(matchingCost3[R - 1, :-2,
                                         max(epsilon + 2, 0):index + 3],
                           axis=1)
                ])
                arg = np.nanargmin(cumulativeCost1 + cumulativeCost3, axis=0)
                totalMatchingCosts[2:] = np.diag(
                    cumulativeCost1[arg]) + np.diag(cumulativeCost3[arg])
                #baseArgs[R, 2:, index] = -arg
                #baseArgs[R - 1, 2:, index] = -arg

            if (np.sum(np.isinf(matchingCost1[R - 1, :, :])) == matchingCost1.shape[1] * matchingCost1.shape[2]) or \
                (np.sum(np.isinf(matchingCost3[R - 1, :, :])) == matchingCost3.shape[1] * matchingCost3.shape[2]): # all matching cost are infinity
                raise OverflowError('all matching cost are infinity')
            return {
                'matchingCost1': matchingCost1,
                'matchingCost3': matchingCost3,
                'totalMatchingCosts': totalMatchingCosts,
                'baseArgs': baseArgs
            }
Example #60
0
classifier_dat = all_data_red_long[:, :, time_inds]

plt.figure()
for component in range(classifier_dat.shape[0]):
    plt.subplot(1, classifier_dat.shape[0], component + 1)
    data.imshow(classifier_dat[component, :, :])

# Downsample data to increase number of trials
## Don't split downsampled trials from same batch across training and testing data

train_fraction = 0.5
total_features = classifier_dat.shape[0] * classifier_dat.shape[2]
train_trial_num = classifier_dat.shape[1] * train_fraction
downsample_ratio_vec = np.linspace(0.1, 10, 100)
down_sample_ratio = np.ceil(downsample_ratio_vec[np.nanargmin(
    ((total_features / downsample_ratio_vec) -
     (train_trial_num * downsample_ratio_vec))**2)])
down_sample_ratio = down_sample_ratio.astype('int')

new_time_points = (classifier_dat.shape[-1] // down_sample_ratio)
downsample_inds = np.asarray([x for x in range(down_sample_ratio)])

batched_classifier_dat = np.zeros(
    (classifier_dat.shape[0], classifier_dat.shape[1] * down_sample_ratio,
     new_time_points))

for time in range(new_time_points):
    for trial in range(classifier_dat.shape[1]):
        batched_classifier_dat[:,trial*down_sample_ratio : (trial*down_sample_ratio)+down_sample_ratio,time] = \
        classifier_dat[:,trial,(time*down_sample_ratio) : (time*down_sample_ratio)+down_sample_ratio]