def Weiner(f,s,n,cut,p):
    w=zeros(f.shape[0])
    #print(w.shape)
    p = int(4)
    inds = [i for i,nu in enumerate(f) if npabs(nu)<cut]
    w[inds] = s*nppower(cos(pi/2. * f[inds] / cut) , p)
    return w/(w+n)
Example #2
0
def pow(x, p):
    r"""Power

    Usage:
        q = pow(x, p) := x ^ p

    Arguments:
        x = base
        p = exponent
    """
    return nppower(x, p)
Example #3
0
def TSSECluster(j, Cluster, ImageColumn, ImageIn, InitialCluster, NumberOfBands, NumberOfClusters):
	CountTemporalUnstablePixel = 0
	TsseCluster = zeros((1, NumberOfClusters))
	for k in range(0, ImageColumn):
		FlagSwitch = int(max(Cluster[k, :]))

		#store SSE of related to each pixel
		if FlagSwitch == 0:
			CountTemporalUnstablePixel = CountTemporalUnstablePixel + 1
		else:
			TsseCluster[0,FlagSwitch] = TsseCluster[0,FlagSwitch] + npsum(nppower((squeeze(ImageIn[k, 0:NumberOfBands]) - transpose(InitialCluster[FlagSwitch, :])),2))
	return([CountTemporalUnstablePixel,TsseCluster,j])
Example #4
0
def EuclideanDistance(j, ImageColumn, ImageIn, ImageRow, InitialCluster, NumberOfBands, NumberOfClusters):
	Cluster = zeros((1, ImageColumn, NumberOfClusters))
	CountClusterPixels = zeros((NumberOfClusters, 1))
	MeanCluster = zeros((NumberOfClusters, NumberOfBands))
	EuclideanDistanceResultant = zeros((1, ImageColumn, NumberOfClusters))
	for k in range(0, ImageColumn):
		temp = ImageIn[k, 0:NumberOfBands]
		EuclideanDistanceResultant[0, k, :] = npsqrt(npsum(nppower((matlib.repmat(temp, NumberOfClusters, 1)) - InitialCluster, 2), axis=1))
		DistanceNearestCluster = min(EuclideanDistanceResultant[0, k, :])

		for l in range(0, NumberOfClusters):
			if DistanceNearestCluster != 0:
				if DistanceNearestCluster == EuclideanDistanceResultant[0, k, l]:
					CountClusterPixels[l] = CountClusterPixels[l] + 1
					for m in range(0, NumberOfBands):
						MeanCluster[l, m] = MeanCluster[l, m] + ImageIn[k, m]
					Cluster[0, k, l] = l
	return([Cluster,CountClusterPixels,EuclideanDistanceResultant,MeanCluster,j])
def simulate_cb(signal_ft,noise_ft,freqs,times,retardations,transmissions,intensity=1.,photonenergy=600.,angle=0.,amplitude=50.):
    collection = nparray([0,1,2],dtype=float)
    '''
    Same as below for simulate_tof()
    Just this time we are inputing the alread built collection_ft etc.
    input also the angle of streaking and amplitude of streaking
    imput also the retardations and transmissions as vectors
    '''
    angles = np.arange(retardations.shape[0])*2*pi/float(transmissions.shape[0])
    nphotos = 50*gamma(transmissions*nppower(cos(angles),int(2))*intensity).astype(int)
    npistars = 50*gamma(transmissions*intensity).astype(int)
    nsigstars = 50*gamma(transmissions*intensity).astype(int)
    for i in range(retardations.shape[0]):
        evec = fillcollection(e_photon = photonenergy,nphotos=nphotos[i],npistars=npistars[i],nsigstars=nsigstars[i])
        # d1-3 based on CookieBoxLayout_v2.3.dxf
        d1 = 7.6/2.
        d2 = 17.6/2.
        d3 = 58.4/2. 
        d3 -= d2
        d2 -= d1
        sim_times = energy2time(evec,r=retardations[i],d1=d1,d2=d2,d3=d3)
        sim_times = append(sim_times,0.) # adds a prompt
        signal_colinds = choice(signal_ft.shape[1],sim_times.shape[0]) 
        noise_colinds = choice(noise_ft.shape[1],sim_times.shape[0]) 
        v_simsum_ft = zeros(signal_ft.shape[0],dtype=complex)
        for i,t in enumerate(sim_times):
            v_simsum_ft += signal_ft[:,signal_colinds[i]] * fourier_delay(freqs,t) 
            v_simsum_ft += noise_ft[:,noise_colinds[i]] 

        v_simsum = real(IFFT(v_simsum_ft,axis=0))
        if collection.shape[0] < v_simsum.shape[0]:
            collection = times
        collection = column_stack((collection,v_simsum))



    return collection
Example #6
0
def pow(x, p):
    return nppower(x, p)
def fillimpulseresponses(printfiles = True,samplefiles = False):
    (s_collection_ft,n_collection_ft) = (nparray([0,0,0],dtype=complex),nparray([0,0,0],dtype=complex))
    filepath = '../data_fs/ave1/'
    filematch = filepath + 'C1--LowPulseHighRes-in-100-out1700-an2100--*.txt'
    filelist = glob.glob(filematch)


    print('filling impulse response files\n\tnum files = %i' % len(filelist))

    for i,f in enumerate(filelist):

        ## processing images 
        ## samplefiles = False
        m = re.search('(.+).txt$',f)
        if (i%10 == 0 and samplefiles):
            outname_spect = m.group(1) + '.spect.dat'
            outname_time = m.group(1) + '.time.dat'
            outname_simTOF = m.group(1) + '.simTOF.dat'

        fi = open(f, "r")
        for passline in range(6):
            headline = '# ' + fi.readline()
        (t,v) = fi.readline().split()
        v_vec=nparray(float(v),dtype=float)
        t_vec=nparray(float(t)*1.e9,dtype=float)
        for line in fi:
            (t,v) = line.split()
            v_vec = row_stack((v_vec,float(v)))
            t_vec = row_stack((t_vec,float(t)*1.e9))
        fi.close()
        #Get the mean time-step for sake of frequencies
        dt = mean(diff(t_vec,n=1,axis=0))
        #FFT the vector
        v_vec_ft = FFT(v_vec,axis=0)
        f = FREQ(v_vec_ft.shape[0],dt)
        m_extend = 10
        f_extend = FREQ(v_vec_ft.shape[0]*m_extend,dt)
        t_extend = arange(0,((t_vec[-1]-t_vec[0])+dt)*m_extend,dt)
        # deep copy for the noise extimation 
        n_vec_ft = npcopy(v_vec_ft)
        # find indices where there is only noise in the power, and indices with predominantly signal
        # replace the signal elements in the noise vector with a random sampling from the noise portion
        chooseinds = nparray([i for i,nu in enumerate(f) if (npabs(nu)> 6.5 and npabs(nu)<(20))])
        replaceinds = nparray([i for i,nu in enumerate(f) if npabs(nu)< 6.5])
        values = choice(n_vec_ft[chooseinds,0],len(replaceinds))
        n_vec_ft[replaceinds,0] = values

        ## build noise vector and add to n_collection_ft
        # sort inds for f and use for interp to extend noise in fourier domain
        inds = argsort(f)
        n_vec_extend_ft_r = interp(f_extend,f[inds],npabs(n_vec_ft[inds,0]))
        n_vec_extend_ft_phi = choice(npangle(n_vec_ft[:,0]),f_extend.shape[0])
        n_vec_extend_ft = nprect(n_vec_extend_ft_r,n_vec_extend_ft_phi)
        n_vec_extend_ft.shape = (n_vec_extend_ft.shape[0],1)
        
        if n_collection_ft.shape[0] < n_vec_extend_ft.shape[0]:
            n_collection_ft = npcopy(n_vec_extend_ft)
           # s_collection_ft.shape = (s_collection_ft.shape[0],1)
        else:
            n_collection_ft = column_stack((n_collection_ft,n_vec_extend_ft))

        ## build signal vector and add to n_collection_ft
        noiseamp = nppower(mean(npabs(values)),int(2))
        sigamp = nppower(mean(nparray([i for i,nu in enumerate(f) if npabs(nu)< 1.0])),int(2))
        s_vec_ft = npcopy(v_vec_ft)
        s_vec_ft[:,0] *= Weiner(f,sigamp,noiseamp,cut = 5,p = 4) * fourier_delay(f,-40) ## Weiner filter and dial back by 40 ns

        if samplefiles:
            out = column_stack((f,npabs(v_vec_ft),npabs(n_vec_ft),npabs(s_vec_ft)))
            savetxt(outname_spect,out,fmt='%.4f')

        s_vec = real(IFFT(s_vec_ft,axis=0))
        s_vec_extend = zeros((f_extend.shape[0],1),dtype=float) 
        s_vec_extend[:s_vec.shape[0],0] = s_vec[:,0]
        s_vec_extend_ft = FFT(s_vec_extend,axis=0)

        if s_collection_ft.shape[0] < s_vec_extend_ft.shape[0]:
            s_collection_ft = npcopy(s_vec_extend_ft)
           # s_collection_ft.shape = (s_collection_ft.shape[0],1)
        else:
            s_collection_ft = column_stack((s_collection_ft,s_vec_extend_ft))

        # first sum all the Weiner filtered and foureir_delay() signals, then add the single noise vector back
    if printfiles:
        outpath = '../data_fs/extern/'
        filename = outpath + 'signal_collection_ft'
        npsave(filename,s_collection_ft)
        filename = outpath + 'noise_collection_ft'
        npsave(filename,n_collection_ft)
        filename = outpath + 'frequencies_collection'
        npsave(filename,f_extend)
        filename = outpath + 'times_collection'
        npsave(filename,t_extend)

    return (s_collection_ft,n_collection_ft,f_extend,t_extend)
Example #8
0
def Chip_Classify(ImageLocation,SaveLocation,ImageFile,NumberOfClusters,InitialCluster):
	ticOverall = time.time()
	#sleep(random.beta(1,1)*30)
	# Reshape InitialCluster
	InitialCluster = array(InitialCluster).reshape((NumberOfClusters,-1))
	ImageIn = imread(ImageFile)
	with rio.open(ImageFile) as gtf_img:
		Info = gtf_img.profile
		Info.update(dtype=rio.int8)
	#print(time.time()-tic)
	ImageRow, ImageColumn, NumberOfBands = ImageIn.shape
	if NumberOfBands > 8:
		NumberOfBands = NumberOfBands - 1
	# prealocate
	Cluster = zeros((ImageRow, ImageColumn, NumberOfClusters))
	CountClusterPixels = zeros((NumberOfClusters, 1))
	MeanCluster = zeros((NumberOfClusters, NumberOfBands))
	EuclideanDistanceResultant = zeros((ImageRow, ImageColumn, NumberOfClusters))
	#os.mkdir('local/larry.leigh.temp/')
	directory = '/tmp/ChipS'
	if not os.path.exists(directory):
		os.makedirs(directory)
	print('starting big loop')
	tic = time.time()
	for j in range(0,ImageRow):
		# if(j % 10 == 0):
			# progbar(j, ImageRow)

		for k in range(0, ImageColumn):
			temp = ImageIn[j, k, 0:NumberOfBands]

			#EuclideanDistanceResultant[j, k, :] = np.npsqrt(np.npsum(np.nppower(np.subtract(np.matlib.repmat(temp, NumberOfClusters, 1), InitialCluster[: ,:]), 2), axis = 1))
			EuclideanDistanceResultant[j, k, :] = npsqrt(npsum(nppower((matlib.repmat(temp, NumberOfClusters, 1)) - InitialCluster, 2), axis=1))
			DistanceNearestCluster = min(EuclideanDistanceResultant[j, k, :])

			#print(str(j) +" "+ str(k))

			for l in range(0, NumberOfClusters):
				if DistanceNearestCluster != 0:
					if DistanceNearestCluster == EuclideanDistanceResultant[j, k, l]:
						CountClusterPixels[l] = CountClusterPixels[l] + 1
						for m in range(0, NumberOfBands):
							MeanCluster[l, m] = MeanCluster[l, m] + ImageIn[j, k, m]
						Cluster[j, k, l] = l

	# progbar(ImageRow, ImageRow)

	print('\n')
	# print(Cluster.shape)
	# print(CountClusterPixels.shape)
	# print(EuclideanDistanceResultant.shape)
	# print(MeanCluster.shape)
	print('\nfinished big loop')
	ImageDisplay = npsum(Cluster, axis = 2)
	print("Execution time: " + str(time.time() - tic))
	#print(globals())
	#shelver("big.loop",['Cluster','CountClusterPixels','EuclideanDistanceResultant','MeanCluster'])
	savez("big.loop.serial",Cluster=Cluster,
					 CountClusterPixels=CountClusterPixels,
					 EuclideanDistanceResultant=EuclideanDistanceResultant,
					 MeanCluster=MeanCluster)

	ClusterPixelCount = count_nonzero(Cluster, axis = 2)
	print("Non-zero cluster pixels: " + str(ClusterPixelCount))

	#Calculate TSSE within clusters
	TsseCluster = zeros((1, NumberOfClusters))
	CountTemporalUnstablePixel = 0
	# TSSECluster Serial
	print("Starting TSSE Cluster computation (Serial version)\n")
	tic = time.time()
	for j in range(0, ImageRow):
		for k in range(0, ImageColumn):
			FlagSwitch = int(max(Cluster[j, k, :]))
			#print(Cluster[j, k, :]) #This prints to the log

			#store SSE of related to each pixel
			if FlagSwitch == 0:
				CountTemporalUnstablePixel = CountTemporalUnstablePixel + 1
			else:
				#Might be TsseCluster[0,FlagSwitch-1]
				#TsseCluster[0,FlagSwitch - 1] = TsseCluster[0,FlagSwitch - 1] + np.sum(np.power(np.subtract(np.squeeze(ImageIn[j, k, 0:NumberOfBands - 1]), np.transpose(InitialCluster[FlagSwitch - 1, :])),2), axis = 0)

				TsseCluster[0,FlagSwitch] = TsseCluster[0,FlagSwitch] + npsum(nppower((squeeze(ImageIn[j, k, 0:NumberOfBands]) - transpose(InitialCluster[FlagSwitch, :])),2))

				#count the number of pixels in each cluster
				#Collected_ClusterPixelCount[FlagSwitch] = Collected_ClusterPixelCount[FlagSwitch] + 1
	Totalsse = npsum(TsseCluster)
	print("Execution time: " + str(time.time() - tic))
	savez("small.loop.serial",CountTemporalUnstablePixel=CountTemporalUnstablePixel,TsseCluster=TsseCluster)

	#get data for final stats....
	#calculate the spatial mean and standard deviation of each cluster

	ClusterMeanAllBands = zeros((NumberOfClusters, NumberOfBands))
	ClusterSdAllBands = zeros((NumberOfClusters, NumberOfBands))
	print('finished small loop')
	#print(time.time()-tic)

	# Cluster Summary Serial
	tic = time.time()
	FinalClusterMean = zeros(NumberOfBands)
	FinalClusterSd = zeros(NumberOfBands)

	for i in range(0, NumberOfClusters):
		Temp = Cluster[:, :, i]

		Temp[Temp == i] = 1

		MaskedClusterAllBands = Temp[:,:,None]*ImageIn[:, :, 0:NumberOfBands]

		for j in range(0, NumberOfBands):
			#Mean = MaskedClusterAllBands(:,:,j)
			Temp = MaskedClusterAllBands[:, :, j]
			TempNonZero = Temp[npnonzero(Temp)]
			TempNonzeronan = TempNonZero[~npisnan(TempNonZero)]
			#TempNonan = Temp[!np.isnan(Temp)]
			with warnings.catch_warnings():
				warnings.filterwarnings('error')
				try:
					FinalClusterMean[j] = npmean(TempNonZero)
					FinalClusterSd[j] = npstd(TempNonZero)
				except RuntimeWarning:
					FinalClusterMean[j] = 0
					FinalClusterSd[j] = 0

		ClusterMeanAllBands[i, :] = FinalClusterMean[:]
		ClusterSdAllBands[i, :] = FinalClusterSd[:]

	print("Execution time: " + str(time.time() - tic))
	savez("cluster.summary.serial",ClusterMeanAllBands=ClusterMeanAllBands,ClusterSdAllBands=ClusterSdAllBands)
	filename = str(SaveLocation) + 'ImageDisplay_' + ImageFile[len(ImageFile)-32:len(ImageFile)-3] + 'mat'
	print('Got filename. Now save the data')
	print(filename)
	save(filename, ImageDisplay)

	filename = str(SaveLocation) + 'ClusterCount' + str(NumberOfClusters) + '_' + ImageFile[len(ImageFile)-32:len(ImageFile)-4] + '.tif'

	#geotiffwrite(filename, int8(ImageDisplay), Info.RefMatrix);

	with rio.open(filename, 'w', **Info) as dst:
		dst.write(int8(ImageDisplay), 1)

	filename = str(SaveLocation) + 'Stats_' + ImageFile[len(ImageFile)-32:len(ImageFile)-3] + 'mat'
	savez(filename, [MeanCluster, CountClusterPixels, ClusterPixelCount, ClusterMeanAllBands, ClusterSdAllBands, Totalsse])
	print('done!')
	print(time.time()-ticOverall)