Example #1
0
    def test_half_correctness(self):
        """Take every finite float16, and check the casting functions with
           a manual conversion."""

        # Create an array of all finite float16s
        a_bits = self.finite_f16.view(dtype=uint16)

        # Convert to 64-bit float manually
        a_sgn = (-1.0)**((a_bits & 0x8000) >> 15)
        a_exp = np.array((a_bits & 0x7c00) >> 10, dtype=np.int32) - 15
        a_man = (a_bits & 0x03ff) * 2.0**(-10)
        # Implicit bit of normalized floats
        a_man[a_exp != -15] += 1
        # Denormalized exponent is -14
        a_exp[a_exp == -15] = -14

        a_manual = a_sgn * a_man * 2.0**a_exp

        a32_fail = np.nonzero(self.finite_f32 != a_manual)[0]
        if len(a32_fail) != 0:
            bad_index = a32_fail[0]
            assert_equal(
                self.finite_f32, a_manual,
                "First non-equal is half value %x -> %g != %g" %
                (self.finite_f16[bad_index], self.finite_f32[bad_index],
                 a_manual[bad_index]))

        a64_fail = np.nonzero(self.finite_f64 != a_manual)[0]
        if len(a64_fail) != 0:
            bad_index = a64_fail[0]
            assert_equal(
                self.finite_f64, a_manual,
                "First non-equal is half value %x -> %g != %g" %
                (self.finite_f16[bad_index], self.finite_f64[bad_index],
                 a_manual[bad_index]))
Example #2
0
def _unique1d(ar,
              return_index=False,
              return_inverse=False,
              return_counts=False):
    """
    Find the unique elements of an array, ignoring shape.
    """
    ar = np.asanyarray(ar).flatten()

    optional_indices = return_index or return_inverse

    if optional_indices:
        perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
        aux = ar[perm]
    else:
        ar.sort()
        aux = ar
    mask = np.empty(aux.shape, dtype=np.bool_)
    mask[:1] = True
    mask[1:] = aux[1:] != aux[:-1]

    ret = (aux[mask], )
    if return_index:
        ret += (perm[mask], )
    if return_inverse:
        imask = np.cumsum(mask) - 1
        inv_idx = np.empty(mask.shape, dtype=np.intp)
        inv_idx[perm] = imask
        ret += (inv_idx, )
    if return_counts:
        idx = np.concatenate(np.nonzero(mask) + ([mask.size], ))
        ret += (np.diff(idx), )
    return ret
Example #3
0
def trimcoef(c, tol=0):
    """
    Remove "small" "trailing" coefficients from a polynomial.

    "Small" means "small in absolute value" and is controlled by the
    parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
    ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
    both the 3-rd and 4-th order coefficients would be "trimmed."

    Parameters
    ----------
    c : array_like
        1-d array of coefficients, ordered from lowest order to highest.
    tol : number, optional
        Trailing (i.e., highest order) elements with absolute value less
        than or equal to `tol` (default value is zero) are removed.

    Returns
    -------
    trimmed : ndarray
        1-d array with trailing zeros removed.  If the resulting series
        would be empty, a series containing a single zero is returned.

    Raises
    ------
    ValueError
        If `tol` < 0

    See Also
    --------
    trimseq

    Examples
    --------
    >>> from numpy1.polynomial import polyutils as pu
    >>> pu.trimcoef((0,0,3,0,5,0,0))
    array([ 0.,  0.,  3.,  0.,  5.])
    >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
    array([ 0.])
    >>> i = complex(0,1) # works for complex
    >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
    array([ 0.0003+0.j   ,  0.0010-0.001j])

    """
    if tol < 0:
        raise ValueError("tol must be non-negative")

    [c] = as_series([c])
    [ind] = np.nonzero(np.abs(c) > tol)
    if len(ind) == 0:
        return c[:1] * 0
    else:
        return c[:ind[-1] + 1].copy()
Example #4
0
    def test_half_ordering(self):
        """Make sure comparisons are working right"""

        # All non-NaN float16 values in reverse order
        a = self.nonan_f16[::-1].copy()

        # 32-bit float copy
        b = np.array(a, dtype=float32)

        # Should sort the same
        a.sort()
        b.sort()
        assert_equal(a, b)

        # Comparisons should work
        assert_((a[:-1] <= a[1:]).all())
        assert_(not (a[:-1] > a[1:]).any())
        assert_((a[1:] >= a[:-1]).all())
        assert_(not (a[1:] < a[:-1]).any())
        # All != except for +/-0
        assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size - 2)
        assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size - 2)
Example #5
0
    def _get_multi_index(self, arr, indices):
        """Mimic multi dimensional indexing.

        Parameters
        ----------
        arr : ndarray
            Array to be indexed.
        indices : tuple of index objects

        Returns
        -------
        out : ndarray
            An array equivalent to the indexing operation (but always a copy).
            `arr[indices]` should be identical.
        no_copy : bool
            Whether the indexing operation requires a copy. If this is `True`,
            `np.may_share_memory(arr, arr[indices])` should be `True` (with
            some exceptions for scalars and possibly 0-d arrays).

        Notes
        -----
        While the function may mostly match the errors of normal indexing this
        is generally not the case.
        """
        in_indices = list(indices)
        indices = []
        # if False, this is a fancy or boolean index
        no_copy = True
        # number of fancy/scalar indexes that are not consecutive
        num_fancy = 0
        # number of dimensions indexed by a "fancy" index
        fancy_dim = 0
        # NOTE: This is a funny twist (and probably OK to change).
        # The boolean array has illegal indexes, but this is
        # allowed if the broadcast fancy-indices are 0-sized.
        # This variable is to catch that case.
        error_unless_broadcast_to_empty = False

        # We need to handle Ellipsis and make arrays from indices, also
        # check if this is fancy indexing (set no_copy).
        ndim = 0
        ellipsis_pos = None  # define here mostly to replace all but first.
        for i, indx in enumerate(in_indices):
            if indx is None:
                continue
            if isinstance(indx, np.ndarray) and indx.dtype == bool:
                no_copy = False
                if indx.ndim == 0:
                    raise IndexError
                # boolean indices can have higher dimensions
                ndim += indx.ndim
                fancy_dim += indx.ndim
                continue
            if indx is Ellipsis:
                if ellipsis_pos is None:
                    ellipsis_pos = i
                    continue  # do not increment ndim counter
                raise IndexError
            if isinstance(indx, slice):
                ndim += 1
                continue
            if not isinstance(indx, np.ndarray):
                # This could be open for changes in numpy.
                # numpy should maybe raise an error if casting to intp
                # is not safe. It rejects np.array([1., 2.]) but not
                # [1., 2.] as index (same for ie. np.take).
                # (Note the importance of empty lists if changing this here)
                try:
                    indx = np.array(indx, dtype=np.intp)
                except ValueError:
                    raise IndexError
                in_indices[i] = indx
            elif indx.dtype.kind != 'b' and indx.dtype.kind != 'i':
                raise IndexError('arrays used as indices must be of '
                                 'integer (or boolean) type')
            if indx.ndim != 0:
                no_copy = False
            ndim += 1
            fancy_dim += 1

        if arr.ndim - ndim < 0:
            # we can't take more dimensions then we have, not even for 0-d
            # arrays.  since a[()] makes sense, but not a[(),]. We will
            # raise an error later on, unless a broadcasting error occurs
            # first.
            raise IndexError

        if ndim == 0 and None not in in_indices:
            # Well we have no indexes or one Ellipsis. This is legal.
            return arr.copy(), no_copy

        if ellipsis_pos is not None:
            in_indices[ellipsis_pos:ellipsis_pos+1] = ([slice(None, None)] *
                                                       (arr.ndim - ndim))

        for ax, indx in enumerate(in_indices):
            if isinstance(indx, slice):
                # convert to an index array
                indx = np.arange(*indx.indices(arr.shape[ax]))
                indices.append(['s', indx])
                continue
            elif indx is None:
                # this is like taking a slice with one element from a new axis:
                indices.append(['n', np.array([0], dtype=np.intp)])
                arr = arr.reshape((arr.shape[:ax] + (1,) + arr.shape[ax:]))
                continue
            if isinstance(indx, np.ndarray) and indx.dtype == bool:
                if indx.shape != arr.shape[ax:ax+indx.ndim]:
                    raise IndexError

                try:
                    flat_indx = np.ravel_multi_index(np.nonzero(indx),
                                    arr.shape[ax:ax+indx.ndim], mode='raise')
                except Exception:
                    error_unless_broadcast_to_empty = True
                    # fill with 0s instead, and raise error later
                    flat_indx = np.array([0]*indx.sum(), dtype=np.intp)
                # concatenate axis into a single one:
                if indx.ndim != 0:
                    arr = arr.reshape((arr.shape[:ax]
                                  + (np.prod(arr.shape[ax:ax+indx.ndim]),)
                                  + arr.shape[ax+indx.ndim:]))
                    indx = flat_indx
                else:
                    # This could be changed, a 0-d boolean index can
                    # make sense (even outside the 0-d indexed array case)
                    # Note that originally this is could be interpreted as
                    # integer in the full integer special case.
                    raise IndexError
            else:
                # If the index is a singleton, the bounds check is done
                # before the broadcasting. This used to be different in <1.9
                if indx.ndim == 0:
                    if indx >= arr.shape[ax] or indx < -arr.shape[ax]:
                        raise IndexError
            if indx.ndim == 0:
                # The index is a scalar. This used to be two fold, but if
                # fancy indexing was active, the check was done later,
                # possibly after broadcasting it away (1.7. or earlier).
                # Now it is always done.
                if indx >= arr.shape[ax] or indx < - arr.shape[ax]:
                    raise IndexError
            if (len(indices) > 0 and
                    indices[-1][0] == 'f' and
                    ax != ellipsis_pos):
                # NOTE: There could still have been a 0-sized Ellipsis
                # between them. Checked that with ellipsis_pos.
                indices[-1].append(indx)
            else:
                # We have a fancy index that is not after an existing one.
                # NOTE: A 0-d array triggers this as well, while one may
                # expect it to not trigger it, since a scalar would not be
                # considered fancy indexing.
                num_fancy += 1
                indices.append(['f', indx])

        if num_fancy > 1 and not no_copy:
            # We have to flush the fancy indexes left
            new_indices = indices[:]
            axes = list(range(arr.ndim))
            fancy_axes = []
            new_indices.insert(0, ['f'])
            ni = 0
            ai = 0
            for indx in indices:
                ni += 1
                if indx[0] == 'f':
                    new_indices[0].extend(indx[1:])
                    del new_indices[ni]
                    ni -= 1
                    for ax in range(ai, ai + len(indx[1:])):
                        fancy_axes.append(ax)
                        axes.remove(ax)
                ai += len(indx) - 1  # axis we are at
            indices = new_indices
            # and now we need to transpose arr:
            arr = arr.transpose(*(fancy_axes + axes))

        # We only have one 'f' index now and arr is transposed accordingly.
        # Now handle newaxis by reshaping...
        ax = 0
        for indx in indices:
            if indx[0] == 'f':
                if len(indx) == 1:
                    continue
                # First of all, reshape arr to combine fancy axes into one:
                orig_shape = arr.shape
                orig_slice = orig_shape[ax:ax + len(indx[1:])]
                arr = arr.reshape((arr.shape[:ax]
                                    + (np.prod(orig_slice).astype(int),)
                                    + arr.shape[ax + len(indx[1:]):]))

                # Check if broadcasting works
                res = np.broadcast(*indx[1:])
                # unfortunately the indices might be out of bounds. So check
                # that first, and use mode='wrap' then. However only if
                # there are any indices...
                if res.size != 0:
                    if error_unless_broadcast_to_empty:
                        raise IndexError
                    for _indx, _size in zip(indx[1:], orig_slice):
                        if _indx.size == 0:
                            continue
                        if np.any(_indx >= _size) or np.any(_indx < -_size):
                                raise IndexError
                if len(indx[1:]) == len(orig_slice):
                    if np.product(orig_slice) == 0:
                        # Work around for a crash or IndexError with 'wrap'
                        # in some 0-sized cases.
                        try:
                            mi = np.ravel_multi_index(indx[1:], orig_slice,
                                                      mode='raise')
                        except Exception:
                            # This happens with 0-sized orig_slice (sometimes?)
                            # here it is a ValueError, but indexing gives a:
                            raise IndexError('invalid index into 0-sized')
                    else:
                        mi = np.ravel_multi_index(indx[1:], orig_slice,
                                                  mode='wrap')
                else:
                    # Maybe never happens...
                    raise ValueError
                arr = arr.take(mi.ravel(), axis=ax)
                try:
                    arr = arr.reshape((arr.shape[:ax]
                                        + mi.shape
                                        + arr.shape[ax+1:]))
                except ValueError:
                    # too many dimensions, probably
                    raise IndexError
                ax += mi.ndim
                continue

            # If we are here, we have a 1D array for take:
            arr = arr.take(indx[1], axis=ax)
            ax += 1

        return arr, no_copy
Example #6
0
 def test_bool(self):
     bool_a = [True, False, True, True]
     int_a, = np.nonzero(bool_a)
     assert_equal(np.ix_(bool_a)[0], int_a)
Example #7
0
 def test_testMaPut(self):
     (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
     m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
     i = np.nonzero(m)[0]
     put(ym, i, zm)
     assert_(all(take(ym, i, axis=0) == zm))