def test_qr_returns_expected_shapes(self, arrays): m_sb, m_bs = arrays wide, tall = [arr.shape for arr in arrays] hy.assume(hn.wide(m_sb)) # with self.subTest(msg='wide'): self.assertArrayShapesAre(gfl.qr_m(m_sb), (utn.chop(wide), wide)) self.assertArrayShape(gfl.qr_rm(m_sb), wide) with self.assertRaisesRegex(*utn.invalid_err): gfl.qr_n(m_sb) # with self.subTest(msg='tall'): self.assertArrayShapesAre(gfl.qr_n(m_bs), (tall, utn.chop(tall))) self.assertArrayShape(gfl.qr_rn(m_bs), utn.chop(tall)) # with self.subTest(msg='complete'): self.assertArrayShapesAre(gfl.qr_m(m_bs), (utn.grow(tall), tall)) # with self.subTest(msg='raw'): self.assertArrayShapesAre(gfl.qr_rawm(m_sb), (utn.trnsp(wide), wide[:-1])) self.assertArrayShapesAre(gfl.qr_rawn(m_bs), (utn.trnsp(tall), utn.drop(tall)))
def test_qr_r_returns_expected_values(self, arrays): m_sb, m_bs = arrays hy.assume(hn.all_well_behaved(m_sb, m_bs)) hy.assume(hn.wide(m_sb)) # with self.subTest(msg='r_m'): cond = np.linalg.cond(m_sb).max() right = gfl.qr_rm(m_sb) rrr = gfl.qr_m(m_sb)[1] self.assertArrayAllClose(right, rrr, cond=cond) # with self.subTest(msg='r_n'): cond = np.linalg.cond(m_bs).max() right = gfl.qr_rn(m_bs) rrr = gfl.qr_n(m_bs)[1] self.assertArrayAllClose(right, rrr, cond=cond)
def test_qr_complete_returns_expected_values(self, m_bs): hy.assume(hn.tall(m_bs)) hy.assume(hn.all_well_behaved(m_bs)) cond = np.linalg.cond(m_bs).max() unitary, right = gfl.qr_m(m_bs) tall = unitary @ right eye = la.dagger(unitary) @ unitary eyet = unitary @ la.dagger(unitary) id_b = np.identity(m_bs.shape[-2], m_bs.dtype) # with self.subTest(msg='qr'): self.assertArrayAllClose(tall, m_bs, cond=cond) # with self.subTest(msg='Q^T Q'): self.assertArrayAllClose(id_b, eye, cond=cond) # with self.subTest(msg='Q Q^T'): self.assertArrayAllClose(id_b, eyet, cond=cond)
def test_qr_returns_expected_values_with_wide(self, m_sb): hy.assume(hn.wide(m_sb)) hy.assume(hn.all_well_behaved(m_sb)) cond = np.linalg.cond(m_sb).max() unitary, right = gfl.qr_m(m_sb) wide = unitary @ right eye = la.dagger(unitary) @ unitary eyet = unitary @ la.dagger(unitary) id_s = np.identity(m_sb.shape[-2], m_sb.dtype) # with self.subTest(msg='qr'): self.assertArrayAllClose(wide, m_sb, cond=cond) # with self.subTest(msg='Q^T Q'): self.assertArrayAllClose(id_s, eye, cond=cond) # with self.subTest(msg='Q Q^T'): self.assertArrayAllClose(id_s, eyet, cond=cond)
def test_qr_rawm_returns_expected_values(self, m_sb): hy.assume(hn.wide(m_sb)) hy.assume(hn.all_well_behaved(m_sb)) cond = np.linalg.cond(m_sb).max() rrr = gfl.qr_m(m_sb)[1] num = rrr.shape[-2] ht_sb, tau = gfl.qr_rawm(m_sb) h_sb = la.transpose(ht_sb) vecs = np.tril(h_sb, -1) vecs[(..., ) + np.diag_indices(num)] = 1 vnorm = gfb.norm(la.row(tau) * vecs[..., :num], axis=-2)**2 right = np.triu(h_sb) # with self.subTest(msg='raw_m'): self.assertArrayAllClose(right, rrr, cond=cond) self.assertArrayAllClose(vnorm, 2 * tau.real, cond=cond) for k in range(num): vvv = vecs[..., num - k - 1:num - k] ttt = la.scalar(tau[..., -k - 1]) right -= ttt * vvv * (la.dagger(vvv) @ right) # with self.subTest(msg='h_m'): self.assertArrayAllClose(right, m_sb, cond=cond)