Example #1
0
 def log_prob(self, value):
     if self._validate_args:
         self._validate_sample(value)
     normalize_term = self.total_count * logsumexp(self.logits, axis=-1) \
         - gammaln(self.total_count + 1)
     return np.sum(value * self.logits - gammaln(value + 1),
                   axis=-1) - normalize_term
Example #2
0
def semi_supervised_hmm(transition_prior, emission_prior,
                        supervised_categories, supervised_words,
                        unsupervised_words):
    num_categories, num_words = transition_prior.shape[
        0], emission_prior.shape[0]
    transition_prob = numpyro.sample(
        'transition_prob',
        dist.Dirichlet(
            np.broadcast_to(transition_prior,
                            (num_categories, num_categories))))
    emission_prob = numpyro.sample(
        'emission_prob',
        dist.Dirichlet(
            np.broadcast_to(emission_prior, (num_categories, num_words))))

    # models supervised data;
    # here we don't make any assumption about the first supervised category, in other words,
    # we place a flat/uniform prior on it.
    numpyro.sample('supervised_categories',
                   dist.Categorical(
                       transition_prob[supervised_categories[:-1]]),
                   obs=supervised_categories[1:])
    numpyro.sample('supervised_words',
                   dist.Categorical(emission_prob[supervised_categories]),
                   obs=supervised_words)

    # computes log prob of unsupervised data
    transition_log_prob = np.log(transition_prob)
    emission_log_prob = np.log(emission_prob)
    init_log_prob = emission_log_prob[:, unsupervised_words[0]]
    log_prob = forward_log_prob(init_log_prob, unsupervised_words[1:],
                                transition_log_prob, emission_log_prob)
    log_prob = logsumexp(log_prob, axis=0, keepdims=True)
    # inject log_prob to potential function
    numpyro.factor('forward_log_prob', log_prob)
Example #3
0
 def log_prob(self, value):
     if self._validate_args:
         self._validate_sample(value)
     value = np.expand_dims(value, -1)
     log_pmf = self.logits - logsumexp(self.logits, axis=-1, keepdims=True)
     value, log_pmf = promote_shapes(value, log_pmf)
     value = value[..., :1]
     return np.take_along_axis(log_pmf, value, -1)[..., 0]
Example #4
0
def predict(model, at_bats, hits, z, rng, player_names, train=True):
    header = model.__name__ + (' - TRAIN' if train else ' - TEST')
    model = substitute(seed(model, rng), z)
    model_trace = trace(model).get_trace(at_bats)
    predictions = model_trace['obs']['value']
    print_results('=' * 30 + header + '=' * 30,
                  predictions,
                  player_names,
                  at_bats,
                  hits)
    if not train:
        model = substitute(model, z)
        model_trace = trace(model).get_trace(at_bats, hits)
        log_joint = 0.
        for site in model_trace.values():
            site_log_prob = site['fn'].log_prob(site['value'])
            log_joint = log_joint + np.sum(site_log_prob.reshape(site_log_prob.shape[:1] + (-1,)),
                                           -1)
        log_post_density = logsumexp(log_joint) - np.log(np.shape(log_joint)[0])
        print('\nPosterior log density: {:.2f}\n'.format(log_post_density))
Example #5
0
def dual_moon_pe(x):
    term1 = 0.5 * ((np.linalg.norm(x, axis=-1) - 2) / 0.4) ** 2
    term2 = -0.5 * ((x[..., :1] + np.array([-2., 2.])) / 0.6) ** 2
    return term1 - logsumexp(term2, axis=-1)
Example #6
0
def forward_one_step(prev_log_prob, curr_word, transition_log_prob,
                     emission_log_prob):
    log_prob_tmp = np.expand_dims(prev_log_prob, axis=1) + transition_log_prob
    log_prob = log_prob_tmp + emission_log_prob[:, curr_word]
    return logsumexp(log_prob, axis=0)
Example #7
0
 def log_prob(self, x):
     term1 = 0.5 * ((np.linalg.norm(x, axis=-1) - 2) / 0.4) ** 2
     term2 = -0.5 * ((x[..., :1] + np.array([-2., 2.])) / 0.6) ** 2
     pe = term1 - logsumexp(term2, axis=-1)
     return -pe