def random_stub(): # pylint: disable = unused-variable import numpy.random as numpy_module from nums.core.array.random import NumsRandomState from nums.core.application_manager import instance app = instance() sys = app.system rs_inst = NumsRandomState(system=sys, seed=1337) numpy_items = sorted( systems_utils.get_module_functions(numpy_module).items()) nums_items = sorted(systems_utils.get_instance_functions(rs_inst).items()) raise NotImplementedError()
def __init__( self, penalty="none", alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver="newton", lr=0.01, random_state=None, fit_intercept=True, normalize=False, ): if fit_intercept is False: raise NotImplementedError( "fit_incercept=False currently not supported.") if normalize is True: raise NotImplementedError( "normalize=True currently not supported.") self._app = _instance() if random_state is None: self.rs: NumsRandomState = self._app.random elif array_utils.is_int(random_state): self.rs: NumsRandomState = NumsRandomState(cm=self._app.cm, seed=random_state) elif isinstance(random_state, NumsRandomState): self.rs: NumsRandomState = random_state else: raise Exception("Unexpected type for random_state %s" % str(type(random_state))) self._penalty = None if penalty == "none" else penalty if self._penalty not in (None, "l1", "l2", "elasticnet"): raise NotImplementedError("%s penalty not supported" % self._penalty) # All sources use lambda as regularization term, and alpha l1/l2 ratio. self._lambda = alpha self._l1penalty = None self._l1penalty_vec = None self._l2penalty = None self._l2penalty_vec = None self._l2penalty_diag = None self.alpha = l1_ratio self._tol = tol self._max_iter = max_iter self._opt = solver self._lr = lr self._beta = None self._beta0 = None
def __init__( self, penalty="none", C=1.0, tol=0.0001, max_iter=100, solver="newton-cg", lr=0.01, random_state=None, fit_intercept=True, normalize=False, ): if fit_intercept is False: raise NotImplementedError("fit_incercept=False currently not supported.") if normalize is True: raise NotImplementedError("normalize=True currently not supported.") self._app = _instance() if random_state is None: self.rs: NumsRandomState = self._app.random elif array_utils.is_int(random_state): self.rs: NumsRandomState = NumsRandomState( cm=self._app.cm, seed=random_state ) elif isinstance(random_state, NumsRandomState): self.rs: NumsRandomState = random_state else: raise Exception( "Unexpected type for random_state %s" % str(type(random_state)) ) self._penalty = None if penalty == "none" else penalty if not (self._penalty is None or self._penalty == "l2"): raise NotImplementedError("%s penalty not supported" % self._penalty) self._lambda = 1.0 / C self._lambda_vec = None self._tol = tol self._max_iter = max_iter self._opt = solver self._lr = lr self._beta = None self._beta0 = None
def random_state(self, seed=None): return NumsRandomState(self.cm, seed)