Example #1
0
    def testSeed(self):
        P = RDSE_Parameters()
        P.size = 1000
        P.sparsity = .08
        P.radius = 12
        P.seed = 98
        R = RDSE(P)
        A = R.encode(987654)

        P.seed = 99
        R = RDSE(P)
        B = R.encode(987654)
        assert (A != B)
Example #2
0
 def testAverageOverlap(self):
     """ Verify that nearby values have the correct amount of semantic
     similarity. Also measure sparsity & activation frequency. """
     P = RDSE_Parameters()
     P.size = 2000
     P.sparsity = .08
     P.radius = 12
     P.seed = 42
     R = RDSE(P)
     A = SDR(R.parameters.size)
     num_samples = 10000
     M = Metrics(A, num_samples + 1)
     for i in range(num_samples):
         R.encode(i, A)
     print(M)
     assert (M.overlap.min() > (1 - 1. / R.parameters.radius) - .04)
     assert (M.overlap.max() < (1 - 1. / R.parameters.radius) + .04)
     assert (M.overlap.mean() > (1 - 1. / R.parameters.radius) - .001)
     assert (M.overlap.mean() < (1 - 1. / R.parameters.radius) + .001)
     assert (M.sparsity.min() > R.parameters.sparsity - .01)
     assert (M.sparsity.max() < R.parameters.sparsity + .01)
     assert (M.sparsity.mean() > R.parameters.sparsity - .005)
     assert (M.sparsity.mean() < R.parameters.sparsity + .005)
     assert (M.activationFrequency.min() > R.parameters.sparsity - .05)
     assert (M.activationFrequency.max() < R.parameters.sparsity + .05)
     assert (M.activationFrequency.mean() > R.parameters.sparsity - .005)
     assert (M.activationFrequency.mean() < R.parameters.sparsity + .005)
     assert (M.activationFrequency.entropy() > .99)
Example #3
0
 def testRandomOverlap(self):
     """ Verify that distant values have little to no semantic similarity.
     Also measure sparsity & activation frequency. """
     P = RDSE_Parameters()
     P.size = 2000
     P.sparsity = .08
     P.radius = 12
     P.seed = 42
     R = RDSE(P)
     num_samples = 1000
     A = SDR(R.parameters.size)
     M = Metrics(A, num_samples + 1)
     for i in range(num_samples):
         X = i * R.parameters.radius
         R.encode(X, A)
     print(M)
     assert (M.overlap.max() < .15)
     assert (M.overlap.mean() < .10)
     assert (M.sparsity.min() > R.parameters.sparsity - .01)
     assert (M.sparsity.max() < R.parameters.sparsity + .01)
     assert (M.sparsity.mean() > R.parameters.sparsity - .005)
     assert (M.sparsity.mean() < R.parameters.sparsity + .005)
     assert (M.activationFrequency.min() > R.parameters.sparsity - .05)
     assert (M.activationFrequency.max() < R.parameters.sparsity + .05)
     assert (M.activationFrequency.mean() > R.parameters.sparsity - .005)
     assert (M.activationFrequency.mean() < R.parameters.sparsity + .005)
     assert (M.activationFrequency.entropy() > .99)
Example #4
0
    def testDeterminism(self):
        """ Verify that the same seed always gets the same results. """
        GOLD = SDR(1000)
        GOLD.sparse = [
            28, 47, 63, 93, 123, 124, 129, 131, 136, 140, 196, 205, 213, 239,
            258, 275, 276, 286, 305, 339, 345, 350, 372, 394, 395, 443, 449,
            462, 468, 471, 484, 514, 525, 557, 565, 570, 576, 585, 600, 609,
            631, 632, 635, 642, 651, 683, 693, 694, 696, 699, 721, 734, 772,
            790, 792, 795, 805, 806, 833, 836, 842, 846, 892, 896, 911, 914,
            927, 936, 947, 953, 955, 962, 965, 989, 990, 996
        ]

        P = RDSE_Parameters()
        P.size = GOLD.size
        P.sparsity = .08
        P.radius = 12
        P.seed = 42
        R = RDSE(P)
        A = R.encode(987654)
        print(A)
        assert (A == GOLD)
Example #5
0
    def testRadiusResolution(self):
        """ Check that these arguments are equivalent. """
        # radius -> resolution
        P = RDSE_Parameters()
        P.size = 2000
        P.activeBits = 100
        P.radius = 12
        R = RDSE(P)
        self.assertAlmostEqual(R.parameters.resolution, 12. / 100, places=5)

        # resolution -> radius
        P = RDSE_Parameters()
        P.size = 2000
        P.activeBits = 100
        P.resolution = 12
        R = RDSE(P)
        self.assertAlmostEqual(R.parameters.radius, 12 * 100, places=5)

        # Moving 1 resolution moves 1 bit (usually)
        P = RDSE_Parameters()
        P.size = 2000
        P.activeBits = 100
        P.resolution = 3.33
        P.seed = 42
        R = RDSE(P)
        sdrs = []
        for i in range(100):
            X = i * (R.parameters.resolution)
            sdrs.append(R.encode(X))
            print("X", X, sdrs[-1])
        moved_one = 0
        moved_one_samples = 0
        for A, B in zip(sdrs, sdrs[1:]):
            delta = A.getSum() - A.getOverlap(B)
            if A.getSum() == B.getSum():
                assert (delta < 2)
                moved_one += delta
                moved_one_samples += 1
        assert (moved_one >= .9 * moved_one_samples)