Example #1
0
  def loadExperiment(self, experiment):
    suite = Suite()
    suite.parse_opt()
    suite.parse_cfg()

    experiment_dir = experiment.split('/')[1]
    params = suite.items_to_params(suite.cfgparser.items(experiment_dir))
    self.params = params

    predictions = suite.get_history(experiment, 0, 'predictions')
    truth = suite.get_history(experiment, 0, 'truth')

    self.iteration = suite.get_history(experiment, 0, 'iteration')
    self.train = suite.get_history(experiment, 0, 'train')

    self.truth = np.array(truth, dtype=np.float)

    if params['output_encoding'] == 'likelihood':
      from nupic.encoders.scalar import ScalarEncoder as NupicScalarEncoder
      self.outputEncoder = NupicScalarEncoder(w=1, minval=0, maxval=40000, n=22, forced=True)
      predictions_np = np.zeros((len(predictions), self.outputEncoder.n))
      for i in xrange(len(predictions)):
        if predictions[i] is not None:
          predictions_np[i, :] = np.array(predictions[i])
      self.predictions = predictions_np
    else:
      self.predictions = np.array(predictions, dtype=np.float)
Example #2
0
    predData_TM_n_step = np.roll(np.array(predict_data_ML),
                                 _options.stepsAhead)
    nTest = len(actual_data) - nTrain - _options.stepsAhead
    NRMSE_TM = NRMSE(actual_data[nTrain:nTrain + nTest],
                     predData_TM_n_step[nTrain:nTrain + nTest])
    print "NRMSE on test data: ", NRMSE_TM
    output.close()

    # calculate neg-likelihood
    predictions = np.transpose(likelihoodsVecAll)
    truth = np.roll(actual_data, -5)

    from nupic.encoders.scalar import ScalarEncoder as NupicScalarEncoder
    encoder = NupicScalarEncoder(w=1,
                                 minval=0,
                                 maxval=40000,
                                 n=22,
                                 forced=True)
    from plot import computeLikelihood, plotAccuracy

    bucketIndex2 = []
    negLL = []
    minProb = 0.0001
    for i in xrange(len(truth)):
        bucketIndex2.append(np.where(encoder.encode(truth[i]))[0])
        outOfBucketProb = 1 - sum(predictions[i, :])
        prob = predictions[i, bucketIndex2[i]]
        if prob == 0:
            prob = outOfBucketProb
        if prob < minProb:
            prob = minProb
Example #3
0
 def __init__(self):
     self.encoder = NupicScalarEncoder(w=1,
                                       minval=0,
                                       maxval=40000,
                                       n=22,
                                       forced=True)