def shift(self, modelResult): """Shift the model result and return the new instance. Queues up the T(i+1) prediction value and emits a T(i) input/prediction pair, if possible. E.g., if the previous T(i-1) iteration was learn-only, then we would not have a T(i) prediction in our FIFO and would not be able to emit a meaningful input/prediction pair. Args: modelResult: A ModelResult instance to shift. Returns: A ModelResult instance. """ inferencesToWrite = {} if self._inferenceBuffer is None: maxDelay = InferenceElement.getMaxDelay(modelResult.inferences) self._inferenceBuffer = collections.deque(maxlen=maxDelay + 1) self._inferenceBuffer.appendleft(copy.deepcopy(modelResult.inferences)) for inferenceElement, inference in modelResult.inferences.iteritems(): if isinstance(inference, dict): inferencesToWrite[inferenceElement] = {} for key, _ in inference.iteritems(): delay = InferenceElement.getTemporalDelay( inferenceElement, key) if len(self._inferenceBuffer) > delay: prevInference = self._inferenceBuffer[delay][ inferenceElement][key] inferencesToWrite[inferenceElement][ key] = prevInference else: inferencesToWrite[inferenceElement][key] = None else: delay = InferenceElement.getTemporalDelay(inferenceElement) if len(self._inferenceBuffer) > delay: inferencesToWrite[inferenceElement] = ( self._inferenceBuffer[delay][inferenceElement]) else: if type(inference) in (list, tuple): inferencesToWrite[inferenceElement] = [ None ] * len(inference) else: inferencesToWrite[inferenceElement] = None shiftedResult = ModelResult( rawInput=modelResult.rawInput, sensorInput=modelResult.sensorInput, inferences=inferencesToWrite, metrics=modelResult.metrics, predictedFieldIdx=modelResult.predictedFieldIdx, predictedFieldName=modelResult.predictedFieldName) return shiftedResult
def _testTemporalShift(): """ Test to see if the metrics manager correctly shifts records for multistep prediction cases """ print "*Testing Multistep temporal shift*..." from nupic.data.fieldmeta import (FieldMetaInfo, FieldMetaType, FieldMetaSpecial) from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opfutils import ModelResult, SensorInput onlineMetrics = () modelFieldMetaInfo = (FieldMetaInfo(name='consumption', type=FieldMetaType.float, special=FieldMetaSpecial.none), ) mgr = MetricsManager(metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.TemporalMultiStep) groundTruths = range(10) oneStepInfs = reversed(range(10)) threeStepInfs = range(5, 15) for iterNum, gt, os, ts in zip(xrange(10), groundTruths, oneStepInfs, threeStepInfs): inferences = {InferenceElement.multiStepPredictions: {1: os, 3: ts}} sensorInput = SensorInput(dataRow=[gt]) result = ModelResult(sensorInput=sensorInput, inferences=inferences) mgr.update(result) assert mgr._getGroundTruth( InferenceElement.multiStepPredictions)[0] == gt if iterNum < 1: #assert mgr._getInference(InferenceElement.multiStepPredictions) is None assert mgr._getInference( InferenceElement.multiStepPredictions)[1] is None else: prediction = mgr._getInference( InferenceElement.multiStepPredictions)[1] assert prediction == 10 - iterNum if iterNum < 3: inference = mgr._getInference( InferenceElement.multiStepPredictions) assert inference is None or inference[3] is None else: prediction = mgr._getInference( InferenceElement.multiStepPredictions)[3] assert prediction == iterNum + 2
def _shiftAndCheck(self, inferences, expectedOutput): inferenceShifter = InferenceShifter() for inference, expected in zip(inferences, expectedOutput): inputResult = ModelResult(inferences=inference) outputResult = inferenceShifter.shift(inputResult) self.assertEqual(outputResult.inferences, expected)
def run(self): """ Runs the given OPF task against the given Model instance """ self._logger.debug("Starting Dummy Model: modelID=%s;" % (self._modelID)) # ========================================================================= # Initialize periodic activities (e.g., for model result updates) # ========================================================================= periodic = self._initPeriodicActivities() self._optimizedMetricLabel = self._optimizeKeyPattern self._reportMetricLabels = [self._optimizeKeyPattern] # ========================================================================= # Create our top-level loop-control iterator # ========================================================================= if self._iterations >= 0: iterTracker = iter(xrange(self._iterations)) else: iterTracker = iter(itertools.count()) # ========================================================================= # This gets set in the unit tests. It tells the worker to sys exit # the first N models. This is how we generate orphaned models doSysExit = False if self._sysExitModelRange is not None: modelAndCounters = self._jobsDAO.modelsGetUpdateCounters( self._jobID) modelIDs = [x[0] for x in modelAndCounters] modelIDs.sort() (beg, end) = self._sysExitModelRange if self._modelID in modelIDs[int(beg):int(end)]: doSysExit = True if self._delayModelRange is not None: modelAndCounters = self._jobsDAO.modelsGetUpdateCounters( self._jobID) modelIDs = [x[0] for x in modelAndCounters] modelIDs.sort() (beg, end) = self._delayModelRange if self._modelID in modelIDs[int(beg):int(end)]: time.sleep(10) # DEBUG!!!! infinite wait if we have 50 models #if len(modelIDs) >= 50: # jobCancel = self._jobsDAO.jobGetFields(self._jobID, ['cancel'])[0] # while not jobCancel: # time.sleep(1) # jobCancel = self._jobsDAO.jobGetFields(self._jobID, ['cancel'])[0] if self._errModelRange is not None: modelAndCounters = self._jobsDAO.modelsGetUpdateCounters( self._jobID) modelIDs = [x[0] for x in modelAndCounters] modelIDs.sort() (beg, end) = self._errModelRange if self._modelID in modelIDs[int(beg):int(end)]: raise RuntimeError( "Exiting with error due to errModelRange parameter") # ========================================================================= # Delay, if necessary if self._delay is not None: time.sleep(self._delay) # ========================================================================= # Run it! # ========================================================================= self._currentRecordIndex = 0 while True: # ========================================================================= # Check if the model should be stopped # ========================================================================= # If killed by a terminator, stop running if self._isKilled: break # If job stops or hypersearch ends, stop running if self._isCanceled: break # If model is mature, stop running ONLY IF we are not the best model # for the job. Otherwise, keep running so we can keep returning # predictions to the user if self._isMature: if not self._isBestModel: self._cmpReason = self._jobsDAO.CMPL_REASON_STOPPED break else: self._cmpReason = self._jobsDAO.CMPL_REASON_EOF # ========================================================================= # Get the the next record, and "write it" # ========================================================================= try: self._currentRecordIndex = next(iterTracker) except StopIteration: break # "Write" a dummy output value. This is used to test that the batched # writing works properly self._writePrediction(ModelResult(None, None, None, None)) periodic.tick() # ========================================================================= # Compute wait times. See if model should exit # ========================================================================= if self.__shouldSysExit(self._currentRecordIndex): sys.exit(1) # Simulate computation time if self._busyWaitTime is not None: time.sleep(self._busyWaitTime) self.__computeWaitTime() # Asked to abort after so many iterations? if doSysExit: sys.exit(1) # Asked to raise a jobFailException? if self._jobFailErr: raise utils.JobFailException( "E10000", "dummyModel's jobFailErr was True.") # ========================================================================= # Handle final operations # ========================================================================= if self._doFinalize: if not self._makeCheckpoint: self._model = None # Delay finalization operation if self._finalDelay is not None: time.sleep(self._finalDelay) self._finalize() self._logger.info("Finished: modelID=%r " % (self._modelID)) return (self._cmpReason, None)
def _testMetricsMgr(): print "*Testing Metrics Managers*..." from nupic.data.fieldmeta import ( FieldMetaInfo, FieldMetaType, FieldMetaSpecial) from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opfutils import ModelResult, SensorInput onlineMetrics = (MetricSpec(metric="aae", inferenceElement='', \ field="consumption", params={}),) print "TESTING METRICS MANAGER (BASIC PLUMBING TEST)..." modelFieldMetaInfo = ( FieldMetaInfo(name='temperature', type=FieldMetaType.float, special=FieldMetaSpecial.none), FieldMetaInfo(name='consumption', type=FieldMetaType.float, special=FieldMetaSpecial.none) ) # ----------------------------------------------------------------------- # Test to make sure that invalid InferenceElements are caught try: MetricsManager( metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.Nontemporal) except ValueError: print "Caught bad inference element: PASS" print onlineMetrics = (MetricSpec(metric="aae", inferenceElement=InferenceElement.prediction, field="consumption", params={}),) nonTemporalMetrics = MetricsManager( metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.Nontemporal) temporalMetrics = MetricsManager( metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.TemporalNextStep) inputs = [ { 'groundTruthRow' : [9, 7], 'predictionsDict' : { InferenceType.Nontemporal: [10, 8], InferenceType.TemporalNextStep: [12, 17] } }, { 'groundTruthRow' : [12, 17], 'predictionsDict' : { InferenceType.Nontemporal: [12, 17], InferenceType.TemporalNextStep: [14, 19] } }, { 'groundTruthRow' : [14, 20], 'predictionsDict' : { InferenceType.Nontemporal: None, InferenceType.TemporalNextStep: [16, 21] } }, { 'groundTruthRow' : [9, 7], 'predictionsDict' : { InferenceType.Nontemporal: [10, 8], InferenceType.TemporalNextStep:None } }, ] for element in inputs: groundTruthRow=element['groundTruthRow'] ntPredictionRow=element['predictionsDict'][InferenceType.Nontemporal] tPredictionRow=element['predictionsDict'][InferenceType.TemporalNextStep] result = ModelResult(sensorInput=SensorInput(dataRow=groundTruthRow, dataEncodings=None, sequenceReset=0, category=None), inferences={'prediction':ntPredictionRow}) nonTemporalMetrics.update(result) result.inferences['prediction'] = tPredictionRow temporalMetrics.update(result) assert nonTemporalMetrics.getMetrics().values()[0] == 2.0/3.0 assert temporalMetrics.getMetrics().values()[0] == 15.0 / 3.0, \ "Expected %f, got %f" %(15.0/3.0, temporalMetrics.getMetrics().values()[0]) print "ok" return
def _testMetricsMgr(): print "*Testing Metrics Managers*..." from nupic.data.fieldmeta import (FieldMetaInfo, FieldMetaType, FieldMetaSpecial) from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opfutils import ModelResult, SensorInput onlineMetrics = (MetricSpec(metric="aae", inferenceElement='', \ field="consumption", params={}),) print "TESTING METRICS MANAGER (BASIC PLUMBING TEST)..." modelFieldMetaInfo = (FieldMetaInfo(name='temperature', type=FieldMetaType.float, special=FieldMetaSpecial.none), FieldMetaInfo(name='consumption', type=FieldMetaType.float, special=FieldMetaSpecial.none)) # ----------------------------------------------------------------------- # Test to make sure that invalid InferenceElements are caught try: MetricsManager(metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.Nontemporal) except ValueError: print "Caught bad inference element: PASS" print onlineMetrics = (MetricSpec(metric="aae", inferenceElement=InferenceElement.prediction, field="consumption", params={}), ) nonTemporalMetrics = MetricsManager( metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.Nontemporal) temporalMetrics = MetricsManager( metricSpecs=onlineMetrics, fieldInfo=modelFieldMetaInfo, inferenceType=InferenceType.TemporalNextStep) inputs = [ { 'groundTruthRow': [9, 7], 'predictionsDict': { InferenceType.Nontemporal: [10, 8], InferenceType.TemporalNextStep: [12, 17] } }, { 'groundTruthRow': [12, 17], 'predictionsDict': { InferenceType.Nontemporal: [12, 17], InferenceType.TemporalNextStep: [14, 19] } }, { 'groundTruthRow': [14, 20], 'predictionsDict': { InferenceType.Nontemporal: None, InferenceType.TemporalNextStep: [16, 21] } }, { 'groundTruthRow': [9, 7], 'predictionsDict': { InferenceType.Nontemporal: [10, 8], InferenceType.TemporalNextStep: None } }, ] for element in inputs: groundTruthRow = element['groundTruthRow'] ntPredictionRow = element['predictionsDict'][InferenceType.Nontemporal] tPredictionRow = element['predictionsDict'][ InferenceType.TemporalNextStep] result = ModelResult(sensorInput=SensorInput(dataRow=groundTruthRow, dataEncodings=None, sequenceReset=0, category=None), inferences={'prediction': ntPredictionRow}) nonTemporalMetrics.update(result) result.inferences['prediction'] = tPredictionRow temporalMetrics.update(result) assert nonTemporalMetrics.getMetrics().values()[0] == 2.0 / 3.0 assert temporalMetrics.getMetrics().values()[0] == 15.0 / 3.0, \ "Expected %f, got %f" %(15.0/3.0, temporalMetrics.getMetrics().values()[0]) print "ok" return