from tensorflow.keras.models import Sequential from tensorflow.keras import layers model = Sequential() model.add(layers.InputLayer(input_shape=(28, 28, 1))) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc']) # 모델 학습 history = model.fit(reshape_x_train, y_train, batch_size=128, epochs=50, validation_split=.1) # 원하는 지표 생성 acc = history.history['acc'] loss = history.history['loss'] import nutellaAgent nnn = nutellaAgent.Nutella() nnn.init("test_run1", "", 0) nnn.log(accuracy=acc, loss=loss)
import nutellaAgent max_features = 20000 maxlen = 80 batch_size = 32 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) model = Sequential() model.add(Embedding(max_features, 128)) model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(1, activation='sigmoid')) # try using different optimizers and different optimizer configs model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=15, validation_data=(x_test, y_test)) score, acc = model.evaluate(x_test, y_test, batch_size=batch_size) nutella = nutellaAgent.Nutella() nutella.init("test_run", "LRW1qf_RkusatXgmqw_bAgvFG2EbE49dHQbp0Fo8", 0) nutella.log(accuracy=acc)