Example #1
0
 def infer(self, cond_input, implementation):
     # cond_input is channels x batch x num_layers x samples
     assert(cond_input.size()[0:3:2] == (2*self.R, self.num_layers)), \
     """Inputs are channels x batch x num_layers x samples.
     Channels and num_layers should be sizes: {}
     But input is: {}""".format((2*self.R, self.num_layers),
                                 cond_input.size()[0:3:2])
     batch_size = cond_input.size(1)
     sample_count = cond_input.size(3)
     cond_input = column_major(cond_input)
     samples = torch.cuda.IntTensor(batch_size, sample_count)
     nv_wavenet_ext.infer(samples, sample_count, batch_size,
                          self.embedding_prev, self.embedding_curr,
                          self.conv_out, self.conv_end, cond_input,
                          self.num_layers, self.use_embed_tanh,
                          self.max_dilation, implementation, *self.layers)
     return samples
Example #2
0
 def infer(self, cond_input, implementation):
     # cond_input is channels x batch x num_layers x samples
     try:
         import nv_wavenet_ext
     except ImportError as e:
         raise ImportError(
             f"{str(e)}. Probably you haven't compiled nv_wavenet. "
             f"nv_wavenet can be compiled as follows:\n\n"
             f"cd {Path(__file__).parent}\n"
             f"make\n"
             f"python build.py install\n"
         )
     assert(cond_input.size()[0:3:2] == (2*self.R, self.num_layers)), \
     """Inputs are channels x batch x num_layers x samples.
     Channels and num_layers should be sizes: {}
     But input is: {}""".format(
         (2*self.R, self.num_layers), cond_input.size()[0:3:2])
     batch_size = cond_input.size(1)
     sample_count = cond_input.size(3)
     cond_input = column_major(cond_input)
     samples = torch.cuda.IntTensor(batch_size, sample_count)
     nv_wavenet_ext.infer(
         samples,
         sample_count,
         batch_size,
         self.embedding_prev,
         self.embedding_curr,
         self.conv_out,
         self.conv_end,
         cond_input,
         self.num_layers,
         self.use_embed_tanh,
         self.max_dilation,
         implementation,
         self.layers
     )
     return samples