Example #1
0
    def __init__(
        self,
        device,
        batch_size,
        num_threads=1,
        device_id=0,
        num_gpus=1,
        crop_shape=(224, 224),
        crop_x=0.3,
        crop_y=0.2,
        is_fused_decoder=False,
    ):
        super(CropPipeline, self).__init__(batch_size, num_threads, device_id)
        self.is_fused_decoder = is_fused_decoder
        self.device = device
        self.input = ops.CaffeReader(path=caffe_db_folder,
                                     shard_id=device_id,
                                     num_shards=num_gpus)

        if self.is_fused_decoder:
            self.decode = ops.ImageDecoderCrop(device="cpu",
                                               crop=crop_shape,
                                               crop_pos_x=crop_x,
                                               crop_pos_y=crop_y,
                                               output_type=types.RGB)
        else:
            self.decode = ops.ImageDecoder(device="cpu", output_type=types.RGB)
            self.crop = ops.Crop(device=self.device,
                                 crop=crop_shape,
                                 crop_pos_x=crop_x,
                                 crop_pos_y=crop_y)
Example #2
0
    def __init__(self, path, batch_size, num_threads=1, device_id=0, num_gpus=1):
        super(CaffeReaderPipeline, self).__init__(batch_size,
                                           num_threads,
                                           device_id)
        self.input = ops.CaffeReader(path = path, shard_id = device_id, num_shards = num_gpus)

        self.decode = ops.ImageDecoderCrop(device = "cpu",
                                           crop = (224, 224),
                                           crop_pos_x = 0.3,
                                           crop_pos_y = 0.2,
                                           output_type = types.RGB)
Example #3
0
 def __init__(
     self,
     train=False,
     batch_size=16,
     size=384,
     num_threads=4, 
     device_id=0
 ):
     super(ExternalSourcePipeline, self).__init__(
         batch_size, num_threads, device_id, seed=42
     )
     self.eii = iter(
         ExternalInputIterator(train, batch_size)
     )
     self.images_input = ops.ExternalSource()
     self.masks_input = ops.ExternalSource()
     if train:
         fixed_area = (size / 784)**2
         self.decode = ops.ImageDecoderRandomCrop(
             device="mixed",
             random_area=[fixed_area*0.7, fixed_area*1.3], 
             random_aspect_ratio=[0.7, 1.3],
         )
     else:
         self.decode = ops.ImageDecoderCrop(
             device="mixed", 
             crop=(size, size)
         )
     self.resize = ops.Resize(
         device="gpu", 
         interp_type=types.INTERP_TRIANGULAR,
         resize_x=size, 
         resize_y=size
     )
     self.mask_resize = ops.Resize(
         device="gpu", 
         interp_type=types.INTERP_NN,
         resize_x=size, 
         resize_y=size
     )
     self.normalize = ops.CropMirrorNormalize(
         device="gpu",
         mean=[0.5 * 255],  # 0.456 * 255, 0.406 * 255],
         std=[0.5 * 255],  # , 0.224 * 255, 0.225 * 255],
         output_layout=types.NCHW
     )
     self.mask_normalize = ops.CropMirrorNormalize(
         device="gpu",
         mean=[0],
         std=[255],
         output_layout=types.NCHW,
         image_type=types.GRAY,
     )
     # extra augmentations
     self.to_gray = ops.ColorSpaceConversion(
         device="gpu", image_type=types.RGB, output_type=types.GRAY
     )
     self.contrast = ops.BrightnessContrast(device="gpu")
     self.hsv = ops.Hsv(device="gpu")
     self.jitter = ops.Jitter(device ="gpu")
     # self.rng1 = ops.Uniform(range=[0, 1])
     self.rng2 = ops.Uniform(range=[0.8,1.2])
     self.rng3 = ops.Uniform(range=[-30, 30]) # for hue
     self.coin03 = ops.CoinFlip(probability=0.3)
     self.train = train