Example #1
0
    def getPmml(self, architecture):

        fName = 'classification'
        lenOfArch = len(architecture)
        mName = 'Keras Model'

        netWorkInfo = []
        scriptVal = []
        extensionInfoForData = [pml.Extension(value=[], anytypeobjs_=[''])]
        dataVal = {}
        for counta, j in enumerate(architecture):
            if counta == 0:
                someConectionId = 'na'
            else:
                someConectionId = tempConId
            if j['itemType'] in ['CODE']:
                # print ('##################',j)
                scriptFile = open(j['filePath'], 'r')
                scriptCode = scriptFile.read()
                scriptCode = scriptCode.replace('<', '&lt;')
                scriptInfo = {}
                scrptVal = []
                # dataVal['scriptUrl']=j['url']
                useFor = j['useFor']
                extensionInfoForScript = [
                    pml.Extension(value=scrptVal, anytypeobjs_=[''])
                ]
                scrp = pml.script(content=scriptCode,
                                  Extension=extensionInfoForScript,
                                  for_=useFor)
                scriptVal.append(scrp)
                tempConId = None
            elif j['itemType'] in ['DATA']:
                try:
                    dataVal['dataUrl'] = j['filePath']
                    extensionInfoForData = [
                        pml.Extension(value=dataVal, anytypeobjs_=[''])
                    ]
                except:
                    pass
                tempConId = None

            elif j['itemType'] == 'FOLDING':
                #         print (j)
                for k in j['children']:
                    tempdata7 = self.convertToStandardJson(k)
                    tempdata7['connectionLayerId'] = someConectionId
                    tempConId = tempdata7['layerId']
                    pp = addLayer(tempdata7)
                    netWorkInfo.append(pp)
                    someConectionId = tempConId
            else:
                # print ('Start of tamasha$$$$$$$$$$',j)
                tempdata7 = self.convertToStandardJson(j)
                tempdata7['connectionLayerId'] = someConectionId
                tempConId = tempdata7['layerId']
                # print ('pakda', tempdata7)
                pp = self.addLayer(tempdata7)
                netWorkInfo.append(pp)

        kk = pml.DeepNetwork(modelName=mName,
                             functionName=fName,
                             NetworkLayer=netWorkInfo,
                             numberOfLayers=lenOfArch)
        tt = pml.Timestamp(datetime.now())
        hd = pml.Header(copyright="Copyright (c) 2018 Software AG",
                        Extension=extensionInfoForData,
                        description="Neural Network Model",
                        Timestamp=pml.Timestamp(datetime.now()))

        jj = pml.PMML(version="4.3Ext",
                      script=scriptVal,
                      Header=hd,
                      DeepNetwork=[kk])
        return jj
Example #2
0
    def addLayer(self, tempData):
        # print ('addLayerPMML 00000111>>>> ',tempData)
        tempLayerBiasobject = pml.LayerBias(content=[])
        tempBia = tempLayerBiasobject.__dict__
        tempBia['weightsFlattenAxis'] = "0"

        tempLayerWeightobject = pml.LayerWeights(content=[])
        tempWei = tempLayerWeightobject.__dict__
        tempWei['weightsFlattenAxis'] = "0"

        if tempData['layerType'] in ['Input']:
            tempData['properties']['outputDimension'] = self.outputForInput(
                tempData)
        if tempData['layerType'] in ['Dropout']:
            if tempData['properties']['dropoutRate'] == '':
                tempData['properties']['dropoutRate'] = '0'
            tempData['properties']['outputDimension'] = self.outputForInput(
                tempData)
        elif tempData['layerType'] in ['BatchNormalization']:
            tempData['properties']['outputDimension'] = self.outputForInput(
                tempData)
            tempWei['weightsShape'] = self.weightBatchNormalization(tempData)
        elif tempData['layerType'] in ['Activation']:
            tempData['properties']['outputDimension'] = tempData['properties'][
                'inputDimension']
        elif tempData['layerType'] in ['Conv2D', 'DepthwiseConv2D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            tempWei['weightsShape'] = self.weightConvo(tempData)
        elif tempData['layerType'] in ['Flatten', 'GlobalAveragePooling2D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
        elif tempData['layerType'] in ['MaxPooling2D', 'AveragePooling2D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
        elif tempData['layerType'] in ['MaxPooling1D', 'AveragePooling1D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            tempData['properties']['poolSize'] = str(
                tempData['properties']['poolSize'])
            tempData['properties']['stride'] = str(
                tempData['properties']['stride'])
        elif tempData['layerType'] in ['Reshape']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            tempData['properties']['reshapeTarget'] = str(
                tuple(tempData['properties']['reshapeTarget']))
        elif tempData['layerType'] in ['ZeroPadding2D', 'ZeroPadding1D']:
            tempData['properties']['outputDimension'] = self.outputForFlatten(
                tempData)
            if len(tempData['properties']['paddingDims']) == 4:
                top_pad, bottom_pad, left_pad, right_pad = tempData[
                    'properties']['paddingDims']
                tempData['properties']['paddingDims'] = ((top_pad, bottom_pad),
                                                         (left_pad, right_pad))
            elif len(tempData['properties']['paddingDims']) == 1:
                pad = tempData['properties']['paddingDims'][0]
                tempData['properties']['paddingDims'] = (pad, pad)
            tempData['properties']['paddingDims'] = str(
                tuple(tempData['properties']['paddingDims']))
        elif tempData['layerType'] in ['Dense']:
            if tempData['properties']['activationFunction'] == "relu":
                tempData['properties']['activationFunction'] = "rectifier"
            elif tempData['properties']['activationFunction'] == "tanh":
                tempData['properties']['activationFunction'] = "tanch"

            tempData['properties']['outputDimension'] = self.outputForDense(
                tempData)
            tempWei['weightsShape'] = self.weightBiasDense(tempData)[0]
            tempBia['weightsShape'] = self.weightBiasDense(tempData)[1]
        # print ('$$$$$$$$$$$$$$$tempData',tempData)
        tempLayerobject = pml.LayerParameters()
        tempvals = tempLayerobject.__dict__
        for j in list(tempvals.keys()):
            try:
                tempvals[j] = tempData['properties'][j]
            except:
                pass

        if tempData['sectionId'] == None:

            if tempData['layerType'] == 'Input':
                input_filed_name = "base64String"
                kk = pml.NetworkLayer(
                    inputFieldName=input_filed_name,
                    layerType=tempData['layerType'],
                    layerId=tempData['layerId'],
                    connectionLayerId=tempData['connectionLayerId'],
                    LayerParameters=tempLayerobject)
            elif tempData['layerType'] == 'Dense':

                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject,LayerBias=tempLayerBiasobject)
            elif tempData['layerType'] in [
                    'Conv2D', 'DepthwiseConv2D', 'BatchNormalization'
            ]:
                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject)
            else:
                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject)

        else:
            extensionInfo = [
                pml.Extension(value={'sectionId': tempData['sectionId']},
                              anytypeobjs_=[''])
            ]
            if tempData['layerType'] == 'Input':
                input_filed_name = "base64String"
                kk=pml.NetworkLayer(inputFieldName=input_filed_name,Extension=[extensionInfo], layerType=tempData['layerType'],\
                                   layerId=tempData['layerId'],connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject)
            elif tempData['layerType'] == 'Dense':

                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],Extension=extensionInfo,\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject,LayerBias=tempLayerBiasobject)
            elif tempData['layerType'] in [
                    'Conv2D', 'DepthwiseConv2D', 'BatchNormalization'
            ]:

                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],Extension=extensionInfo,\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject,LayerWeights=tempLayerWeightobject)
            else:
                kk=pml.NetworkLayer(layerType=tempData['layerType'],layerId=tempData['layerId'],Extension=extensionInfo,\
                                   connectionLayerId=tempData['connectionLayerId'],\
                                   LayerParameters=tempLayerobject)

        return kk