Example #1
0
def oanda_historical_data(instrument,
                          start_date,
                          end_date,
                          granularity='M1',
                          client=None):
    params = {
        "from": start_date,
        "to": end_date,
        "granularity": granularity,
        "count": 2500,
    }

    df_full = pd.DataFrame()
    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        client.request(r)
        dat = []
        api_data = r.response.get('candles')
        if (api_data):
            for oo in r.response.get('candles'):
                dat.append([
                    oo['time'], oo['volume'], oo['mid']['o'], oo['mid']['h'],
                    oo['mid']['l'], oo['mid']['c']
                ])

            df = pd.DataFrame(dat)
            df.columns = ['time', 'volume', 'open', 'high', 'low', 'close']
            df = df.set_index('time')
            if df_full.empty:
                df_full = df
            else:
                df_full = df_full.append(df)
    df_full.index = pd.to_datetime(df_full.index)
    return df_full
 def fetch_range(self,
                 start_day,
                 end_day,
                 granularity,
                 instrument,
                 col,
                 save=True):
     path = './data/' + start_day.strftime(
         '%Y%m%d') + '-' + end_day.strftime(
             '%Y%m%d') + '-' + instrument + '.csv.zip'
     if os.path.exists(path):
         return pd.read_csv(path)
     nth, divider = 0, 100
     delta_day = (end_day - start_day)
     mod = timedelta(int(np.ceil(delta_day.days / divider)))
     bar = tqdm.tqdm(range(divider))
     res = []
     while start_day + mod * nth < end_day:
         start = datetime.strftime(start_day + mod * nth,
                                   '%Y-%m-%dT%H:%M:%SZ')
         end = datetime.strftime(min(start_day + mod * (nth + 1), end_day),
                                 '%Y-%m-%dT%H:%M:%SZ')
         params = {"from": start, "to": end, "granularity": granularity}
         for r in InstrumentsCandlesFactory(instrument=instrument,
                                            params=params):
             self.client.request(r)
             res.extend(r.response.get('candles'))
         df = self.res_to_df(res)
         bar.update(1)
         nth += 1
     df = self.align(df)
     if save:
         df[col].to_csv(path, index=False, compression='zip')
     return df
 def get_history_price_segment(self, _currency_pair, _params):
     for r in InstrumentsCandlesFactory(instrument=_currency_pair,
                                        params=_params):
         # print("REQUEST: {} {} {}".format(r, r.__class__.__name__, r.params))
         record_json = self.client.request(r)
         new_df = pd.io.json.json_normalize(record_json['candles'])
         yield new_df
Example #4
0
 def __init__(self, _from, _to, gran, instr):
     '''2017-01-01T00:00:00Z 2017-06-30T00:00:00Z H4 EUR_USD'''
     client = API(access_token=config['account']['token'])
     instrument = instr
     params = {"granularity": gran, "from": _from, "to": _to}
     for res in InstrumentsCandlesFactory(instrument=instr, params=params):
         self.rv = client.request(res)
Example #5
0
    def fetch_data_frame(self, _from: datetime.datetime,
                         _to: datetime.datetime, gran: str, symbol: str):

        instr = symbol[:3] + '_' + symbol[-3:]

        params = {
            "granularity": gran,
            "from": _from.strftime(self.date_format_in),
            "to": _to.strftime(self.date_format_in)
        }

        candles = {}

        for r in InstrumentsCandlesFactory(instrument=instr, params=params):
            print("REQUEST: {} {} {}".format(r, r.__class__.__name__,
                                             r.params))
            self.client.request(r)
            for candle in r.response.get('candles'):
                dt = datetime.datetime.strptime(
                    candle.get('time')[0:19], self.date_format_out)
                candles[dt] = []
                candles[dt].append(candle['mid']['o'])
                candles[dt].append(candle['mid']['h'])
                candles[dt].append(candle['mid']['l'])
                candles[dt].append(candle['mid']['c'])
                candles[dt].append(candle['volume'])

        df = pd.DataFrame.from_dict(candles, orient='index')
        df.columns = ['open', 'high', 'low', 'close', 'volume']

        return df
Example #6
0
def get_historical_data_factory(instrument, params):
    # filename
    p_to = params['to'][:10]
    p_from = params['from'][:10]
    p_granularity = params['granularity']
    filename = f"data/data_oanda_{instrument}_{p_from}_{p_to}_{p_granularity}.csv"
    if os.path.isfile(filename):
        df2 = pd.read_csv(filename)
        df2['datetime'] = pd.to_datetime(df2['datetime'])
        df2 = df2.set_index('datetime')
        return df2

    # Create a Data Feed
    client = API(access_token=access_token)

    df_list = []

    def cnv(response):
        # for candle in response.get('candles'):
        #     print(candle)
        candles = [candle['mid'] for candle in response['candles']]

        ts = pd.DataFrame(
            {'datetime': [candle['time'] for candle in response['candles']]})

        vol = pd.DataFrame(
            {'volume': [candle['volume'] for candle in response['candles']]})

        candles_df = pd.DataFrame(data=candles)
        ts_df = pd.DataFrame(data=ts)
        vol_df = pd.DataFrame(data=vol)

        df = pd.concat([ts_df, candles_df, vol_df], axis=1)
        df.rename({
            'o': 'open',
            'h': 'high',
            'l': 'low',
            'c': 'close'
        },
                  axis=1,
                  inplace=True)

        df['datetime'] = pd.to_datetime(df['datetime'])
        df = df.set_index('datetime')
        for col in df.columns:
            df[col] = pd.to_numeric(df[col])
        df_list.append(df)

    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        # print("FACTORY REQUEST: {} {} {}".format(r, r.__class__.__name__, r.params))
        rv = client.request(r)
        cnv(rv)

    df2 = pd.concat(df_list)
    now = datetime.datetime.now()
    dt_string = now.strftime("%Y%m%d%H%M%S")

    df2.to_csv(filename)

    return df2
Example #7
0
    def __init__(self, client, instrument, resolution, from_date, to_date=None, datetime_fmt=None, timezone=None):
        self.client = client
        self.account_summary = client.account_summary
        self.api = client.api
        # define params of candles
        self.instrument = instrument
        self.resolution = resolution
        self.timezone = timezone or self.account_summary.get("timezone")
        self.from_date = timezone_shift(from_date, in_tz=self.timezone)
        self.to_date = timezone_shift(to_date, in_tz=self.timezone)
        self.datetime_fmt = datetime_fmt or self.account_summary.get("datetime_format")
        self.candles_params = {
            "granularity": self.resolution,
            # "alignmentTimezone": self.timezone,
            "from": self.from_date,
            "to": self.to_date
        }
        # generate request for candles
        self.requests = InstrumentsCandlesFactory(self.instrument, self.candles_params)

        # initialize response
        self._response = None
        # initialize dictionary table
        self._dict_table = None
        # initialize dataframe table
        self._dataframe_table = None
Example #8
0
def main():
    """
    My first attempt at pulling data from Oanda
    """

    oanda_environment = 'Practice'
    if oanda_environment == 'Live':
        # oanda_account_id = os.environ['OANDA_ACCOUNTID']
        oanda_access_token = os.environ['OANDA_ACCESS_TOKEN']
        # oanda_hostname = "api-fxtrade.oanda.com"
    else:
        # oanda_account_id = os.environ['OANDA_ACCOUNTID_DEV']
        oanda_access_token = os.environ['OANDA_ACCESS_TOKEN_DEV']
        # oanda_hostname = "api-fxpractice.oanda.com"
    # oanda_port = "443"

    client = API(oanda_access_token)
    instrument, granularity = "EUR_USD", "M15"
    _from = "2021-03-01T00:00:00Z"
    params = {"from": _from, "granularity": granularity}
    fn = "/tmp/{}.{}.json".format(instrument, granularity)
    if os.path.isfile(fn):
        os.remove(fn)
    with open(fn, "w") as OUT:
        # The factory returns a generator generating consecutive
        # requests to retrieve full history from date 'from' till 'to'
        json_data = list()
        for r in InstrumentsCandlesFactory(instrument=instrument,
                                           params=params):
            client.request(r)
            json_data.extend(r.response.get('candles'))
        OUT.write(json.dumps(json_data, indent=2))
Example #9
0
def requestCandles(apiClient, gran, _from, _to, instr):
    params = {"granularity": gran, "from": _from, "to": _to}
    df = None
    for r in InstrumentsCandlesFactory(instrument=instr, params=params):
        print("REQUEST: {} {} {}".format(r, r.__class__.__name__, r.params))
        rv = apiClient.request(r)
        for candle in r.response.get('candles'):
            index = pd.to_datetime(candle.get('time')[0:19])
            data = np.array([[
                candle['mid']['o'], candle['mid']['h'], candle['mid']['l'],
                candle['mid']['c']
            ]])
            # print(data)
            df_ = pd.DataFrame(
                {
                    'Open': float(data[:, 0]),
                    'High': float(data[:, 1]),
                    'Low': float(data[:, 2]),
                    'Close': float(data[:, 3])
                },
                index=[index])
            if df is None:
                df = df_
            else:
                df = df.append(df_)
    df = df.sort_index()
    return df
def bulkloadlivedatabytime(instrument, granularity, start):
    # load data from start date to now
    # example: bulkloadlivedatabytime('EUR_GBP','M15','2017-08-07T00:00:00Z')
    client = API(access_token=access_token)
    time = []
    value = []
    stop_date = datetime.utcnow()
    start_date = datetime.strptime(start, "%Y-%m-%dT%H:%M:%SZ")
    diff = stop_date - start_date
    mins = int(diff.total_seconds() / (60 * 15))
    print(mins)
    stop = stop_date.strftime("%Y-%m-%dT%H:%M:%SZ")
    print(stop)
    params = {
        "from": start,
        "to": stop,
        "granularity": granularity,
        "count": mins
    }
    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        client.request(r)
        data = r.response.get('candles')

        for k in range(len(data)):
            time.append(data[k]['time'])
            value.append(data[k]['mid']['c'])
    d = {'time': time, instrument: value}
    df = pandas.DataFrame(data=d)
    return df
Example #11
0
 def histPrice(self, broker, accountID, pair, t0, t1=None, gran='M10'):
     if broker == 'oanda':
         t0Str = t0.strftime('%Y-%m-%dT%H:%M:%S') + 'Z'
         if t1 == None:
             paramshist = \
                 {
                     "from": str(t0Str),
                     "granularity": gran
                 }
         else:
             t1Str = t1.strftime('%Y-%m-%dT%H:%M:%S') + 'Z'
             paramshist = \
                 {
                     "from": str(t0Str),
                     "to": str(t1Str),
                     "granularity": gran
                 }
         priceH = pd.DataFrame({
             'c': [],
             'h': [],
             'l': [],
             'o': []
         },
                               index=[])
         client = API(access_token=cfg.brokerList['oanda']['token'])
         for r in InstrumentsCandlesFactory(instrument=pair,
                                            params=paramshist):
             rv = dict(client.request(r))["candles"]
             for candle in rv:
                 print(candle)
                 priceH.loc[pd.Timestamp(candle["time"],
                                         tzinfo='UTC')] = candle["mid"]
         return (priceH)
Example #12
0
def save_2mgdb(client, param, db):
    collection = db[param['api_param']['granularity']]

    for r in InstrumentsCandlesFactory(instrument=param['instrument'],
                                       params=param['api_param']):
        client.request(r)

        # data type
        # r.response:
        # {'instrument': 'EUR_USD',
        #  'granularity': 'S5',
        #  'candles': [{'complete': True, 'volume': 1, 'time': '2018-01-01T22:00:00.000000000Z', 'mid': {'o': '1.20052', 'h': '1.20052', 'l': '1.20052', 'c': '1.20052'}}]
        # }
        candles = r.response.get('candles')  # candles is a list
        if (candles == []):
            print(
                '\t * skip to write next: find empty data (with candles == [])'
            )
            continue
        else:
            print('\t - download progress: {}'.format(candles[0].get('time')))

        # write to mongodb
        bar_list = fy.walk(normalize_raw_candles, candles)

        start_time = time.time()
        for bar in bar_list:
            collection.insert_one(bar)
        end_time = time.time()
        print('\t - it took {} second to write to mongodb '.format(end_time -
                                                                   start_time))

    length = drop_duplicates_func(collection)
    print(f'\t <<collection:{collection}>> has been drop {length} duplicates!')
Example #13
0
 def downloadStockData(self):
     '''
       :Arguments:
         :instruments:
           Name of the instrument we are trading
         :start: specify the start date of stcok to download
         :end: specify end date of the stock to download
         
       :Returntype:
         return the csv file of the downloaded stock in the
         specific folder.
     '''
     from oandapyV20.contrib.factories import InstrumentsCandlesFactory
     def covert_json(reqst, frame):
         for candle in reqst.get('candles'):
             ctime = candle.get('time')[0:19]
             try:
                 #--Only download closed candle
                 if not candle['complete']:
                     pass
                 else:
                     rec = '{time},{complete},{o},{h},{l},{c},{v}'.format(time = ctime,
                            complete = candle['complete'],
                            o = candle['mid']['o'],
                            h = candle['mid']['h'],
                            l = candle['mid']['l'],
                            c = candle['mid']['c'],
                            v = candle['volume'])
             except Exception as e:
                 raise(e)
             finally:
                 frame.write(rec+'\n')
             
             
     #try except to both create folder and enter ticker
     try:
         #create folder for all instruments
         if not os.path.exists(self.path['mainPath'] + f'/DATASETS/{self.instrument}'):
             os.makedirs(self.path['mainPath'] + f'/DATASETS/{self.instrument}')
         #import the required timeframe
         with open(self.path['mainPath'] + '/DATASETS/{}/{}_{}.csv'.format(self.instrument, self.instrument, self.timeframe), 'w+') as OUTPUT:
             params = {'from': self.start,
                       'to': self.end,
                       'granularity': self.timeframe,
                       }
             try:
               for ii in InstrumentsCandlesFactory(instrument = self.instrument, params = params):
                   print("REQUEST: {} {} {}".format(ii, ii.__class__.__name__, ii.params))
                   self.client.request(ii)
                   covert_json(ii.response, OUTPUT)
             except:
                 print('{} not available using this API\n Please check your internet connection'.format(self.instrument))
             print('********************Done downloading******************\n{}_{}\n'.format(self.instrument, self.timeframe))
     except Exception as e:
         raise(e)
     finally:
         print('*'*40)
         print('Stock download completed')
         print('*'*40)
Example #14
0
def get_forex_data(inst, frame, from_date=None, days=3650, include_first=True):
    client = oandapyV20.API(access_token=os.environ.get('OANDA_TOKEN'))
    # time period used
    end_date = datetime.datetime.utcnow().replace(microsecond=0)
    start_date = (end_date - datetime.timedelta(days=days)).isoformat('T')+'Z' if \
                 from_date == None else pd.Timestamp(from_date).to_pydatetime().isoformat('T')+'Z'
    end_date = end_date.isoformat('T') + 'Z'
    # define list to hold the candles data
    # define request parameters
    params = {
        'granularity': frame,
        'price': 'AB',
        'from': start_date,
        'to': end_date
    }
    # fetch data from Oanda servers by a client request
    data = list()
    for r in InstrumentsCandlesFactory(instrument=inst, params=params):
        client.request(r)
        data.append(r.response['candles'])
    flat_list = [flatten_dict(item) for sublist in data for item in sublist]
    # remove duplicated records from the dataFrame
    candles_data = ks.DataFrame(data=flat_list)
    candles_data = candles_data.iloc[1:] if not include_first else candles_data
    candles_data = candles_data[candles_data['complete'] == True]
    candles_data = candles_data.drop_duplicates(
        'time', keep='last').reset_index(drop=True)
    candles_data = candles_data.astype({
        'ask.o': np.float,
        'ask.h': np.float,
        'ask.l': np.float,
        'ask.c': np.float,
        'bid.o': np.float,
        'bid.h': np.float,
        'bid.l': np.float,
        'bid.c': np.float,
        'volume': np.float
    })
    candles_data.rename(columns={
        'ask.o': 'ask_open',
        'ask.h': 'ask_high',
        'ask.l': 'ask_low',
        'ask.c': 'ask_close',
        'bid.o': 'bid_open',
        'bid.h': 'bid_high',
        'bid.l': 'bid_low',
        'bid.c': 'bid_close',
        'time': 'utc_time'
    },
                        inplace=True)
    candles_data['utc_time'] = candles_data['utc_time'].apply(
        lambda x: datetime.datetime.strptime(
            x.split('.')[0] + 'Z', '%Y-%m-%dT%H:%M:%SZ'))
    candles_data = candles_data[[
        'utc_time', 'ask_open', 'ask_high', 'ask_low', 'ask_close', 'bid_open',
        'bid_high', 'bid_low', 'bid_close', 'volume'
    ]]
    candles_data.sort_values(by=['utc_time'], inplace=True, ascending=True)
    return candles_data
Example #15
0
    def __call__(self,
                 instrument,
                 _from,
                 _to,
                 granularity="M1",
                 price="MBA",
                 count=2500,
                 save=False):
        # from_date = now.replace(day=_from[0], month=_from[1], hour=0, minute=0, second=0).strftime("%Y-%m-%dT%H:%M:%SZ")
        # to_date = now.replace(day=_to[0], month=_to[1], hour=21, minute=0, second=0).strftime("%Y-%m-%dT%H:%M:%SZ")

        from_date = _from.strftime("%Y-%m-%dT%H:%M:%SZ")
        to_date = _to.strftime("%Y-%m-%dT%H:%M:%SZ")

        params = {
            "from": from_date,
            "to": to_date,
            "price": price,
            "granularity": granularity,
            "count": count,
        }

        candles = []
        for req in InstrumentsCandlesFactory(instrument=instrument,
                                             params=params):
            single_req = self.api.request(req)
            candles += single_req['candles']

        list_candles = []
        for candle in tqdm(candles):

            list_candles.append([
                float(candle["mid"]["o"]),  # middle open
                float(candle["mid"]["c"]),  # middle open
                float(candle["mid"]["h"]),  # middle open
                float(candle["mid"]["l"]),  # middle open
                #float(candle["ask_c"]),   # ask close
                #float(candle["bid_c"]),   # bid close
                candle["volume"]
            ])

        overall_count = len(list_candles)

        if save:
            now = datetime.datetime.now()

            namefile = os.path.join(
                SAVEPATH,
                "{}_from{}_to{}{}_{}_{}.json".format(instrument, _from, _to,
                                                     now.strftime("%B"),
                                                     granularity,
                                                     overall_count))

            with open(namefile, "w") as jout:
                json.dump(list_candles, jout, indent=4)

            return list_candles, namefile

        return list_candles
Example #16
0
def get_candles(instrument, granularity, _from, _to, da=daily_alignment):
    print('Fetching Candles.')
    client = 'f01b219340f61ffa887944e7673d85a5-6bcb8a840148b5c366e17285c984799e'
    client = oandapyV20.API(access_token=client)
    params = {
        'from': _from,
        'to': _to,
        'granularity': granularity,
        'price': 'BAM',
        'count': 5000,
        'alignmentTimezone': 'UTC',
        'dailyAlignment': da
    }
    # Request Data
    coll = []
    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        client.request(r)
        coll.append(r.response)
    # collect Returned Data into list.  Cast to floats.
    bidlow = []
    bidhigh = []
    bidclose = []
    asklow = []
    askhigh = []
    askclose = []
    midlow = []
    midhigh = []
    midclose = []
    timestamp = []
    volume = []
    for i in range(len(coll)):
        for j in range(len(coll[i]['candles'])):
            bidhigh.append(float(coll[i]['candles'][j]['bid']['h']))
            bidlow.append(float(coll[i]['candles'][j]['bid']['l']))
            bidclose.append(float(coll[i]['candles'][j]['bid']['c']))
            askhigh.append(float(coll[i]['candles'][j]['ask']['h']))
            asklow.append(float(coll[i]['candles'][j]['ask']['l']))
            askclose.append(float(coll[i]['candles'][j]['ask']['c']))
            midhigh.append(float(coll[i]['candles'][j]['mid']['h']))
            midlow.append(float(coll[i]['candles'][j]['mid']['l']))
            midclose.append(float(coll[i]['candles'][j]['mid']['c']))
            timestamp.append(coll[i]['candles'][j]['time'])
            volume.append(float(coll[i]['candles'][j]['volume']))
    # Assemble DataFrame.  Cast Values.
    df = pd.DataFrame(pd.to_datetime(timestamp))
    df.columns = ['timestamp']
    df['bidhigh'] = pd.to_numeric(bidhigh)
    df['bidlow'] = pd.to_numeric(bidlow)
    df['bidclose'] = pd.to_numeric(bidclose)
    df['askhigh'] = pd.to_numeric(askhigh)
    df['asklow'] = pd.to_numeric(asklow)
    df['askclose'] = pd.to_numeric(askclose)
    df['midhigh'] = pd.to_numeric(midhigh)
    df['midlow'] = pd.to_numeric(midlow)
    df['midclose'] = pd.to_numeric(midclose)
    df['spread'] = df.askclose - df.bidclose
    df['volume'] = pd.to_numeric(volume)
    return df
Example #17
0
    def getMarketData(self, granularity):
        access_token = self.access_token;
        client = self.client;
        instrument = self.instrument;
        startTimeString,endTimeString = self.date;

        params = {
            "from": startTimeString,
            "to": endTimeString,
            "granularity": granularity,
            "includeFirst": True,
            "count": 5000,
        }
        marketData = [];
        for r in InstrumentsCandlesFactory(instrument=instrument,params=params):
            rv = client.request(r);
            marketData.extend(rv["candles"]);

        if granularity == "D":
            newCandles = []
            toAdd = []
            endTimeString = startTimeString
            startTimeString = self.parseMonthsBack(startTimeString,2)
            params = {
                "from": startTimeString,
                "to": endTimeString,
                "granularity": granularity,
                "includeFirst": True,
                "count": 5000,
            }
            for r in InstrumentsCandlesFactory(instrument=instrument,params=params):
                rv = client.request(r);
                newCandles.extend(rv["candles"])
            print("newStartDate: " + startTimeString)
            print("newEndDate: " + endTimeString)
            daysToAdd = 7 - (self.dayInterval%7)
            toMinus = 2 + daysToAdd
            print(newCandles)
            for i in range(daysToAdd):
                print(toMinus)
                toAdd.append(newCandles[len(newCandles)-toMinus])
                toMinus -= 1

            marketData = toAdd
        return marketData;
Example #18
0
    def fetch_to_db(self, _from: datetime.datetime, _to: datetime.datetime,
                    gran: str, symbol: str):

        instr = symbol[:3] + '_' + symbol[-3:]

        params = {
            "granularity": gran,
            "from": _from.strftime(self.date_format_in),
            "to": _to.strftime(self.date_format_in)
        }

        session = Connection.get_instance().get_session()

        existing_quotes = session.query(PriceQuote) \
            .filter_by(symbol=symbol) \
            .filter(PriceQuote.datetime >= (_from - datetime.timedelta(minutes=1)))\
            .filter(PriceQuote.datetime <= _to).all()

        existing_quote_dts = list(
            map(lambda _quote: _quote.datetime.strftime(self.date_format_out),
                existing_quotes))

        try:
            for r in InstrumentsCandlesFactory(instrument=instr,
                                               params=params):
                print("REQUEST: {} {} {}".format(r, r.__class__.__name__,
                                                 r.params))
                rv = self.client.request(r)

                for candle in r.response.get('candles'):
                    dt = candle.get('time')[0:19]
                    print(candle)
                    if candle['complete'] and dt not in existing_quote_dts:
                        quote = PriceQuote(
                            symbol,
                            datetime.datetime.strptime(dt,
                                                       self.date_format_out),
                            candle['mid']['h'], candle['mid']['l'],
                            candle['volume'])
                        existing_quote_dts.append(dt)
                        session.add(quote)

            session.commit()

        except SQLAlchemyError as e:
            session.rollback()
            print(e)

        except Exception as e:
            print(e)
Example #19
0
    def get_history(self,
                    instrument: str,
                    granularity: str,
                    count: int = 50,
                    _from=None,
                    _to=None,
                    price="MBA",
                    complete=False):

        #granularity input is given as a number  [seconds]
        #or as a string following granularity_dict values
        """
        Returns a list of candles, each candle is a dictionary:
            {
                'complete': True, 
                'volume': 100, 
                'time': '2018-10-05T14:56:40.000000000Z',
                'mid': {
                    'o': '1.15258', 
                    'h': '1.15286', 
                    'l': '1.15246', 
                    'c': '1.15286'
                    }
            }
        """

        params = {
            "granularity":  granularity if type(granularity)==str \
                else granularity_dict[granularity]
            }

        params['count'] = count
        params['price'] = price

        if _from and _to:
            params['from'] = _from
            params['to'] = _to
            params.pop("count")

        candles = []
        for req in InstrumentsCandlesFactory(instrument=instrument,
                                             params=params):
            single_req = self.send_request(req)
            candles += single_req['candles']

        if not complete:
            return candles
        else:
            return candles if candles[-1]["complete"] else candles[:-1]
Example #20
0
def save_2file(client, param, saveto, account_type):
    params = param['api_param']

    file_2_write = "../output/{}.{}.{}.{}.{}".format(
        param['instrument'], params['granularity'],
        params['from'][0:20].replace('-', ''),
        params['to'][0:20].replace('-', ''), account_type)
    if (saveto == 'csv'):
        file_2_write += '.csv'
    print('Write data to {}'.format(file_2_write))

    with open(file_2_write, "w") as OUT:
        cnt = 0
        # The factory returns a generator generating consecutive
        # requests to retrieve full history from date 'from' till 'to'
        for r in InstrumentsCandlesFactory(instrument=param['instrument'],
                                           params=params):
            client.request(r)

            # data type
            # r.response:
            # {'instrument': 'EUR_USD',
            #  'granularity': 'S5',
            #  'candles': [{'complete': True, 'volume': 1, 'time': '2018-01-01T22:00:00.000000000Z', 'mid': {'o': '1.20052', 'h': '1.20052', 'l': '1.20052', 'c': '1.20052'}}]
            # }
            candles = r.response.get('candles')  # candles is a list
            if (candles == []):
                print(
                    'skip to write next: find empty data (with candles == []), at '
                )
                continue
            else:
                print('\t - download progress: {}'.format(
                    candles[0].get('time')))

            start_time = time.time()

            if (saveto == 'string'):
                OUT.write(json.dumps(candles, indent=2))
            elif (saveto == 'csv'):
                convert_candle_list_2_csv(OUT, candles, skip_header=cnt)
            cnt += 1

            end_time = time.time()
            print('\t - it took {} second to write to {} '.format(
                end_time - start_time, saveto))
Example #21
0
def get_raw_data(td, granularity):
    # Function gets the historical data for td-period till now
    time_now = datetime.utcnow()
    starting_time = time_now - td
    _from = starting_time.strftime("%Y-%m-%dT%H:%M:%SZ")
    _to = time_now.strftime("%Y-%m-%dT%H:%M:%SZ")

    params = {
        "from": _from,
        "to": _to,
        "granularity": granularity,
    }

    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        client.request(r)
        timeframe_price_data = r.response.get('candles')
        return timeframe_price_data
Example #22
0
 def getMarketData(self, granularity):
     access_token = self.access_token
     client = self.client
     instrument = self.instrument
     startTimeString, endTimeString = self.date
     params = {
         "from": startTimeString,
         "to": endTimeString,
         "granularity": granularity,
         "includeFirst": True,
         "count": 5000,
     }
     marketData = []
     for r in InstrumentsCandlesFactory(instrument=instrument,
                                        params=params):
         rv = client.request(r)
         marketData.extend(rv["candles"])
     return marketData
Example #23
0
 def getdata(self):
     client = API(access_token=self.token)
     data = {}
     data_frame = pd.DataFrame()
     for traindpairs in self.instruments:
         dictionary = {}
         for r in InstrumentsCandlesFactory(instrument=traindpairs,
                                            params=self.params):
             client.request(r)
             for datas in range(len(r.response.get('candles'))):
                 dictionary[datetime.strptime(
                     r.response.get('candles')[datas]['time'].replace(
                         ".000000000Z", ''),
                     '%Y-%m-%dT%H:%M:%S')] = r.response.get(
                         'candles')[datas]['mid'][self.candle]
         pair_dict = pd.Series(dictionary)
         data_frame[traindpairs] = pair_dict
     return data_frame
Example #24
0
def get_candles_bid_close(instrument,
                          granularity,
                          _from,
                          _to,
                          da=daily_alignment,
                          oanda_api=oanda_api):
    print('Fetching Candles.')
    client = oanda_api
    client = oandapyV20.API(access_token=client)
    params = {
        'from': _from,
        'to': _to,
        'granularity': granularity,
        'price': 'B',
        'count': 5000,
        'alignmentTimezone': 'America/Los_Angeles',
        'dailyAlignment': da
    }
    # Request Data
    coll = []
    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        try:
            client.request(r)
            coll.append(r.response)
        except Exception as e:
            print(e)
    # collect Returned Data into list.  Cast to floats.
    bidclose = []
    timestamp = []
    volume = []
    for i in range(len(coll)):
        for j in range(len(coll[i]['candles'])):
            bidclose.append(float(coll[i]['candles'][j]['bid']['c']))
            timestamp.append(coll[i]['candles'][j]['time'])
            volume.append(float(coll[i]['candles'][j]['volume']))
    # Assemble DataFrame.  Cast Values.
    df = pd.DataFrame(pd.to_datetime(timestamp))
    df.columns = ['timestamp']
    df[instrument] = pd.to_numeric(bidclose)
    df['volume'] = pd.to_numeric(volume)
    if not coll[i]['candles'][-1]['complete']:
        df.drop(df.last_valid_index(), inplace=True)
    return df
Example #25
0
    def fetch_to_file(self,
                      _from: datetime.datetime,
                      _to: datetime.datetime,
                      gran='H1',
                      symbol='EURUSD'):
        file_path = os.path.join(os.path.abspath(os.getcwd()), 'resources',
                                 'oanda_prices', symbol + '.csv')
        mode = 'w'
        if (os.path.isfile(file_path)):
            mode = 'a'
            with open(file_path, "r") as O:
                all_lines = O.readlines()
                last_line = all_lines[len(all_lines) - 1]
                last_dt = datetime.datetime.strptime(last_line[0:19],
                                                     self.date_format_out)

                if gran == 'M1':
                    delta = datetime.timedelta(minutes=1)
                elif gran == 'D1':
                    delta = datetime.timedelta(days=1)
                else:
                    delta = datetime.timedelta(hours=1)

                _from = last_dt + delta

        instr = symbol[:3] + '_' + symbol[-3:]

        params = {
            "granularity": gran,
            "from": _from.strftime(self.date_format_in),
            "to": _to.strftime(self.date_format_in)
        }

        with open(file_path, mode) as O:

            for r in InstrumentsCandlesFactory(instrument=instr,
                                               params=params):
                print("REQUEST: {} {} {}".format(r, r.__class__.__name__,
                                                 r.params))
                self.client.request(r)
                OandaHistoryPriceFetcher.__write_rec_to_file(r.response, O)
def bulkloadlivedata(instrument, granularity, minutelookback):
    # load data from how many minutes lookback to now
    # example: bulkloadlivedata('DE30_EUR', 'M15', '100000')
    client = API(access_token=access_token)
    time = []
    value = []
    stop_date = datetime.utcnow()
    stop = stop_date.strftime("%Y-%m-%dT%H:%M:%SZ")
    start = (
        stop_date -
        timedelta(minutes=int(minutelookback))).strftime("%Y-%m-%dT%H:%M:%SZ")

    params = {"from": start, "to": stop, "granularity": granularity}
    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        client.request(r)
        data = r.response.get('candles')

        for k in range(len(data)):
            time.append(data[k]['time'])
            value.append(data[k]['mid']['c'])
    d = {'time': time, instrument: value}
    df = pandas.DataFrame(data=d)
    return df
Example #27
0
def get_candles(_from, _to, instrument, granularity = granularity,
                da = daily_alignment):
    # Prepare Request
    code = 'f01b219340f61ffa887944e7673d85a5-6bcb8a840148b5c366e17285c984799e'
    client = code
    client = oandapyV20.API(access_token=client)
    params = {'from': _from,
              'to': _to,
              'granularity': granularity,
              'price': 'M',
              'count': 5000,
              'alignmentTimezone': 'UTC', #'America/Los_Angeles',
              'dailyAlignment': da}
    # Request Data
    coll = []
    for r in InstrumentsCandlesFactory(instrument = instrument, 
                                       params = params):
        client.request(r)
        coll.append(r.response)
    # collect Returned Data into list.  Cast to floats.
    low = []
    high = []
    close = []
    timestamp = []
    for i in range(len(coll)):
        for j in range(len(coll[i]['candles'])):
            high.append(float(coll[i]['candles'][j]['mid']['h']))
            low.append(float(coll[i]['candles'][j]['mid']['l']))
            close.append(float(coll[i]['candles'][j]['mid']['c']))               
            timestamp.append(coll[i]['candles'][j]['time'])
    # Assemble DataFrame.  Cast Values.
    df = pd.DataFrame(pd.to_datetime(timestamp))
    df.columns = ['timestamp']
    df['high'] = pd.to_numeric(high)
    df['low'] = pd.to_numeric(low)
    df['close'] = pd.to_numeric(close)
    return df
Example #28
0
    def multi_assets_builder(self,
                             weeks,
                             instruments,
                             continuous=True,
                             granularity="M1",
                             price="MBA",
                             count=2500,
                             save=False):

        time_intervals = get_time_interval(weeks_ago=weeks)

        if continuous:
            time_intervals = [(time_intervals[-1][0], time_intervals[0][1])]

        datas = []

        for _from, _to in time_intervals:
            dfs = []

            from_date = _from.strftime("%Y-%m-%dT%H:%M:%SZ")
            to_date = _to.strftime("%Y-%m-%dT%H:%M:%SZ")

            params = {
                "from": from_date,
                "to": to_date,
                "price": price,
                "granularity": granularity,
                "count": count,
            }

            for ins in instruments:
                candles = []
                for req in InstrumentsCandlesFactory(instrument=ins,
                                                     params=params):
                    single_req = self.api.request(req)
                    candles += single_req['candles']

                list_candles = []
                for candle in tqdm(candles):

                    if granularity == "D":
                        timestamp = datetime.datetime.strptime(
                            candle["time"][:10], "%Y-%m-%d")
                    else:
                        timestamp = datetime.datetime.strptime(
                            candle["time"][:19], "%Y-%m-%dT%H:%M:%S")

                    list_candles.append({
                        "timestamp":
                        timestamp,
                        #"{}.o".format(ins) : float(candle["mid"]["o"]),   # middle open
                        "{}".format(ins):
                        float(candle["mid"]["c"]),  # middle close
                        #"{}.h".format(ins) : float(candle["mid"]["h"]),   # middle high
                        #"{}.l".format(ins) : float(candle["mid"]["l"]),   # middle low
                    })

                to_append = pd.DataFrame(list_candles).set_index("timestamp")
                to_append = to_append.loc[~to_append.index.duplicated(
                    keep='first')]

                dfs.append(
                    to_append
                )  #.drop_duplicates(subset='timestamp', keep='last'))

            df = pd.concat(dfs, axis=1)

            df = df.fillna(method='ffill')
            df = df.fillna(method='bfill')

            datas.append(df)

        if continuous:

            data_list = [
                list(d) for d in zip(*[df[x].tolist() for x in instruments])
            ]

            data_output = {
                "prices": data_list,
                "min": np.array(data_list).min(),
                "max": np.array(data_list).max()
            }

            return data_output

        else:
            return datas  #this is a dataframe so watch the dog out
Example #29
0
def cnv(r):
    for candle in r.get('candles'):
        ctime = candle.get('time')[0:19]
        try:
            rec = "{time},{complete},{o},{h},{l},{c},{v}".format(
                time=ctime,
                complete=candle['complete'],
                o=candle['mid']['o'],
                h=candle['mid']['h'],
                l=candle['mid']['l'],
                c=candle['mid']['c'],
                v=candle['volume'],
            )

            close = float(candle['mid']['c'])

            bot.tick(close)

        except Exception as e:
            print(e, r)
        else:
            # print(rec + "\n")
            print("Current Price: " + str(close) + " Current Value: " +
                  str(bot.get_current_value()))


for r in InstrumentsCandlesFactory(instrument=instr, params=params):
    print("REQUEST: {} {} {}".format(r, r.__class__.__name__, r.params))
    rv = client.request(r)
    cnv(r.response)
Example #30
0
def getHistory(instrument, granularity, dateFrom, dateTo, count, freq):
    rawData = []
    history = []
    historyOpen = []
    historyHigh = []
    historyLow = []
    historyClose = []
    accountID, token = authAPI()
    api = API(access_token=token)

    params = {
        "from": dateFrom,
        "to": dateTo,
        "count": count,
        "granularity": granularity,
    }

    for r in InstrumentsCandlesFactory(instrument=instrument, params=params):
        api.request(r)
        #for i in range( 0, len(r.response) ):
        #print( r.response["candles"] )
        rawData.extend(r.response["candles"])
        dfRaw = pd.DataFrame.from_records(rawData)

        #print( len(dfRaw) )
        '''
		for i in range( 0, len( r.response["candles"] ) ):
			history.append( r.response["candles"][i]["mid"] )
		print( len( r.response["candles"] ) )
		'''
    #sHistory = pd.Series( history, index = pd.date_range( start = dateFrom, periods= len(history), freq = freq ))

    #for i in range( 0, len( history ) ):
    #historyOpen.append( sHistory.values[i]["o"] )	#add open values to list
    #historyHigh.append( sHistory.values[i]["h"] )	#add high values to list
    #historyLow.append( sHistory.values[i]["l"] )	#add low values to list
    #historyClose.append( sHistory.values[i]["c"] )	#add close values to list

    for i in range(0, len(dfRaw)):
        historyOpen.append(dfRaw["mid"][i]["o"])  #add open values to list
        historyHigh.append(dfRaw["mid"][i]["h"])  #add high values to list
        historyLow.append(dfRaw["mid"][i]["l"])  #add low values to list
        historyClose.append(dfRaw["mid"][i]["c"])  #add close values to list

    #print( historyClose )
    #print( historyOpen[0], historyHigh[0], historyLow[0], historyClose[0] )

    dfHistory = pd.DataFrame(
        {
            "open": historyOpen,
            "high": historyHigh,
            "low": historyLow,
            "close": historyClose
        }, )
    #index = dfRaw["time"] )
    #index = pd.date_range( start = dateFrom, periods= len(dfRaw), freq = freq ) )
    #print( dfHistory )

    macdHistory, histHistory = MACD(dfHistory.close,
                                    fast=12,
                                    slow=26,
                                    signal=9)
    '''
	macdHistory.plot( style = 'k' )
	histHistory.plot( style = 'b--' )
	plt.show()
	'''

    ma10 = EMA(dfHistory.close, 10)
    ma50 = EMA(dfHistory.close, 50)
    '''
	ma10.plot( style = 'k' )
	ma50.plot( style = 'b--' )
	plt.show()
	'''

    dfHistory["macd"] = macdHistory  #add macd column to dataframe
    dfHistory["hist"] = histHistory  #add histograph column to dataframe

    dfHistory["ma10"] = ma10  #add ma10 to DataFrame
    dfHistory["ma50"] = ma50  #add ma50 to DataFrame

    #print( dfHistory.index )

    strFrom = dateFrom.replace(":", "_")
    strTo = dateTo.replace(":", "_")

    fname = "./historical-data/" + str(instrument) + "-" + str(
        granularity) + "-" + strFrom + "to" + strTo

    dfHistory.to_pickle(path=fname)

    dfPickled = pd.read_pickle(path=fname)

    #print( dfPickled.tail(1) )
    print(dfPickled)