def _create_model(
            self,
            model_fn=ssd_meta_arch.SSDMetaArch,
            apply_hard_mining=True,
            normalize_loc_loss_by_codesize=False,
            add_background_class=True,
            random_example_sampling=False,
            expected_loss_weights=model_pb2.DetectionModel().ssd.loss.NONE,
            min_num_negative_samples=1,
            desired_negative_sampling_ratio=3,
            use_keras=False,
            predict_mask=False,
            use_static_shapes=False,
            nms_max_size_per_class=5,
            calibration_mapping_value=None):
        is_training = False
        num_classes = 1
        mock_anchor_generator = MockAnchorGenerator2x2()
        if use_keras:
            mock_box_predictor = test_utils.MockKerasBoxPredictor(
                is_training,
                num_classes,
                add_background_class=add_background_class)
        else:
            mock_box_predictor = test_utils.MockBoxPredictor(
                is_training,
                num_classes,
                add_background_class=add_background_class)
        mock_box_coder = test_utils.MockBoxCoder()
        if use_keras:
            fake_feature_extractor = FakeSSDKerasFeatureExtractor()
        else:
            fake_feature_extractor = FakeSSDFeatureExtractor()
        mock_matcher = test_utils.MockMatcher()
        region_similarity_calculator = sim_calc.IouSimilarity()
        encode_background_as_zeros = False

        def image_resizer_fn(image):
            return [tf.identity(image), tf.shape(image)]

        classification_loss = losses.WeightedSigmoidClassificationLoss()
        localization_loss = losses.WeightedSmoothL1LocalizationLoss()
        non_max_suppression_fn = functools.partial(
            post_processing.batch_multiclass_non_max_suppression,
            score_thresh=-20.0,
            iou_thresh=1.0,
            max_size_per_class=nms_max_size_per_class,
            max_total_size=nms_max_size_per_class,
            use_static_shapes=use_static_shapes)
        score_conversion_fn = tf.identity
        calibration_config = calibration_pb2.CalibrationConfig()
        if calibration_mapping_value:
            calibration_text_proto = """
      function_approximation {
        x_y_pairs {
            x_y_pair {
              x: 0.0
              y: %f
            }
            x_y_pair {
              x: 1.0
              y: %f
            }}}""" % (calibration_mapping_value, calibration_mapping_value)
            text_format.Merge(calibration_text_proto, calibration_config)
            score_conversion_fn = (
                post_processing_builder._build_calibrated_score_converter(  # pylint: disable=protected-access
                    tf.identity, calibration_config))
        classification_loss_weight = 1.0
        localization_loss_weight = 1.0
        negative_class_weight = 1.0
        normalize_loss_by_num_matches = False

        hard_example_miner = None
        if apply_hard_mining:
            # This hard example miner is expected to be a no-op.
            hard_example_miner = losses.HardExampleMiner(
                num_hard_examples=None, iou_threshold=1.0)

        random_example_sampler = None
        if random_example_sampling:
            random_example_sampler = sampler.BalancedPositiveNegativeSampler(
                positive_fraction=0.5)

        target_assigner_instance = target_assigner.TargetAssigner(
            region_similarity_calculator,
            mock_matcher,
            mock_box_coder,
            negative_class_weight=negative_class_weight)

        model_config = model_pb2.DetectionModel()
        if expected_loss_weights == model_config.ssd.loss.NONE:
            expected_loss_weights_fn = None
        else:
            raise ValueError('Not a valid value for expected_loss_weights.')

        code_size = 4

        kwargs = {}
        if predict_mask:
            kwargs.update({
                'mask_prediction_fn':
                test_utils.MockMaskHead(num_classes=1).predict,
            })

        model = model_fn(
            is_training=is_training,
            anchor_generator=mock_anchor_generator,
            box_predictor=mock_box_predictor,
            box_coder=mock_box_coder,
            feature_extractor=fake_feature_extractor,
            encode_background_as_zeros=encode_background_as_zeros,
            image_resizer_fn=image_resizer_fn,
            non_max_suppression_fn=non_max_suppression_fn,
            score_conversion_fn=score_conversion_fn,
            classification_loss=classification_loss,
            localization_loss=localization_loss,
            classification_loss_weight=classification_loss_weight,
            localization_loss_weight=localization_loss_weight,
            normalize_loss_by_num_matches=normalize_loss_by_num_matches,
            hard_example_miner=hard_example_miner,
            target_assigner_instance=target_assigner_instance,
            add_summaries=False,
            normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
            freeze_batchnorm=False,
            inplace_batchnorm_update=False,
            add_background_class=add_background_class,
            random_example_sampler=random_example_sampler,
            expected_loss_weights_fn=expected_loss_weights_fn,
            **kwargs)
        return model, num_classes, mock_anchor_generator.num_anchors(
        ), code_size
Example #2
0
    def _create_model(self,
                      model_fn=ssd_meta_arch.SSDMetaArch,
                      apply_hard_mining=True,
                      normalize_loc_loss_by_codesize=False,
                      add_background_class=True,
                      random_example_sampling=False,
                      weight_regression_loss_by_score=False,
                      use_expected_classification_loss_under_sampling=False,
                      minimum_negative_sampling=1,
                      desired_negative_sampling_ratio=3,
                      use_keras=False,
                      predict_mask=False,
                      use_static_shapes=False,
                      nms_max_size_per_class=5):
        is_training = False
        num_classes = 1
        mock_anchor_generator = MockAnchorGenerator2x2()
        if use_keras:
            mock_box_predictor = test_utils.MockKerasBoxPredictor(
                is_training, num_classes, predict_mask=predict_mask)
        else:
            mock_box_predictor = test_utils.MockBoxPredictor(
                is_training, num_classes, predict_mask=predict_mask)
        mock_box_coder = test_utils.MockBoxCoder()
        if use_keras:
            fake_feature_extractor = FakeSSDKerasFeatureExtractor()
        else:
            fake_feature_extractor = FakeSSDFeatureExtractor()
        mock_matcher = test_utils.MockMatcher()
        region_similarity_calculator = sim_calc.IouSimilarity()
        encode_background_as_zeros = False

        def image_resizer_fn(image):
            return [tf.identity(image), tf.shape(image)]

        classification_loss = losses.WeightedSigmoidClassificationLoss()
        localization_loss = losses.WeightedSmoothL1LocalizationLoss()
        non_max_suppression_fn = functools.partial(
            post_processing.batch_multiclass_non_max_suppression,
            score_thresh=-20.0,
            iou_thresh=1.0,
            max_size_per_class=nms_max_size_per_class,
            max_total_size=nms_max_size_per_class,
            use_static_shapes=use_static_shapes)
        classification_loss_weight = 1.0
        localization_loss_weight = 1.0
        negative_class_weight = 1.0
        normalize_loss_by_num_matches = False

        hard_example_miner = None
        if apply_hard_mining:
            # This hard example miner is expected to be a no-op.
            hard_example_miner = losses.HardExampleMiner(
                num_hard_examples=None, iou_threshold=1.0)

        random_example_sampler = None
        if random_example_sampling:
            random_example_sampler = sampler.BalancedPositiveNegativeSampler(
                positive_fraction=0.5)

        target_assigner_instance = target_assigner.TargetAssigner(
            region_similarity_calculator,
            mock_matcher,
            mock_box_coder,
            negative_class_weight=negative_class_weight,
            weight_regression_loss_by_score=weight_regression_loss_by_score)

        expected_classification_loss_under_sampling = None
        if use_expected_classification_loss_under_sampling:
            expected_classification_loss_under_sampling = functools.partial(
                ops.expected_classification_loss_under_sampling,
                minimum_negative_sampling=minimum_negative_sampling,
                desired_negative_sampling_ratio=desired_negative_sampling_ratio
            )

        code_size = 4
        model = model_fn(
            is_training=is_training,
            anchor_generator=mock_anchor_generator,
            box_predictor=mock_box_predictor,
            box_coder=mock_box_coder,
            feature_extractor=fake_feature_extractor,
            encode_background_as_zeros=encode_background_as_zeros,
            image_resizer_fn=image_resizer_fn,
            non_max_suppression_fn=non_max_suppression_fn,
            score_conversion_fn=tf.identity,
            classification_loss=classification_loss,
            localization_loss=localization_loss,
            classification_loss_weight=classification_loss_weight,
            localization_loss_weight=localization_loss_weight,
            normalize_loss_by_num_matches=normalize_loss_by_num_matches,
            hard_example_miner=hard_example_miner,
            target_assigner_instance=target_assigner_instance,
            add_summaries=False,
            normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
            freeze_batchnorm=False,
            inplace_batchnorm_update=False,
            add_background_class=add_background_class,
            random_example_sampler=random_example_sampler,
            expected_classification_loss_under_sampling=
            expected_classification_loss_under_sampling)
        return model, num_classes, mock_anchor_generator.num_anchors(
        ), code_size