def __call__(
        self,
        net_out: NetOutput,
        src: Tuple[List[YoloBoxes], List[Confidences]],
        tgt: List[YoloBoxes],
        image_batch: ImageBatch,
        gt_hms: Heatmaps,
    ) -> None:
        heatmap, _, _ = net_out
        box_batch, confidence_batch = src
        box_batch = box_batch[: self.limit]
        confidence_batch = confidence_batch[: self.limit]
        _, _, h, w = image_batch.shape
        for i, (sb, sc, tb, hm, img, gt_hm) in enumerate(
            zip(box_batch, confidence_batch, tgt, heatmap, image_batch, gt_hms)
        ):
            plot = DetectionPlot(
                h=h,
                w=w,
                use_alpha=self.use_alpha,
                figsize=self.figsize,
                show_probs=self.show_probs,
            )
            plot.with_image(img, alpha=0.7)
            plot.with_image(hm[0].log(), alpha=0.3)
            plot.with_yolo_boxes(tb, color="blue")
            plot.with_yolo_boxes(sb, sc, color="red")
            plot.save(f"{self.out_dir}/{self.prefix}-boxes-{i}.png")

            plot = DetectionPlot(
                h=h, w=w, use_alpha=self.use_alpha, figsize=self.figsize
            )
            plot.with_image(img, alpha=0.7)
            plot.with_image((gt_hm[0] + 1e-4).log(), alpha=0.3)
            plot.save(f"{self.out_dir}/{self.prefix}-hm-{i}.png")
Example #2
0
def test_dataset() -> None:
    rows = read_train_rows("/store/points.json")
    dataset = CharDataset(rows=rows, transforms=test_transforms)
    for i in range(10):
        id, img, points, labels = dataset[2]
        plot = DetectionPlot(inv_normalize(img))
        plot.draw_points(points, color="red", size=0.5)
        plot.save(f"/store/test-{i}.jpg")
def test_yolo_vflip() -> None:
    in_boxes = YoloBoxes(torch.tensor([
        [0.1, 0.1, 0.1, 0.05],
    ]))
    out_boxes = yolo_vflip(in_boxes)
    assert (out_boxes - torch.tensor([[0.1, 0.9, 0.1, 0.05]])).abs().sum() == 0
    plot = DetectionPlot(w=100, h=100)
    plot.with_yolo_boxes(in_boxes, color="blue")
    plot.with_yolo_boxes(out_boxes, color="red")
    plot.save(f"store/test-yolo-vflip.png")
def test_anchors() -> None:
    fn = Anchors(size=2)
    hm = torch.zeros((1, 1, 8, 8))
    anchors = fn(hm)
    boxes = boxmap_to_boxes(anchors)
    assert len(boxes) == 8 * 8

    plot = DetectionPlot(w=8, h=8)
    plot.with_yolo_boxes(YoloBoxes(boxes[[0, 4, 28, 27]]), color="blue")
    plot.save(f"store/test-anchorv1.png")
Example #5
0
    def eval_step() -> None:
        model.eval()
        loss_meter = MeanMeter()
        metrics = MeanAveragePrecision(iou_threshold=0.3,
                                       num_classes=config.num_classes)
        for ids, image_batch, gt_point_batch, gt_label_batch in tqdm(
                test_loader):
            image_batch = image_batch.to(device)
            gt_point_batch = [x.to(device) for x in gt_point_batch]
            gt_label_batch = [x.to(device) for x in gt_label_batch]
            _, _, h, w = image_batch.shape
            netout = model(image_batch)
            _, _, hm_h, hm_w = netout.shape
            gt_hms = config.mkmaps(gt_point_batch,
                                   gt_label_batch,
                                   w=hm_w,
                                   h=hm_h)
            loss = config.hmloss(
                netout,
                gt_hms,
            )
            point_batch, confidence_batch, label_batch = config.to_points(
                netout, h=h, w=w)

            loss_meter.update(loss.item())
            for (
                    points,
                    gt_points,
                    labels,
                    gt_labels,
                    confidences,
                    image,
                    gt_hm,
                    id,
            ) in zip(
                    point_batch,
                    gt_point_batch,
                    label_batch,
                    gt_label_batch,
                    confidence_batch,
                    image_batch,
                    gt_hms,
                    ids,
            ):
                plot = DetectionPlot(inv_normalize(image))
                plot.draw_points(points, color="blue", size=w / 100)
                plot.draw_points(gt_points, color="red", size=w / 150)
                plot.save(f"{config.out_dir}/{id}-points-.png")

        logs["test_loss"] = loss_meter.get_value()
        model_loader.save_if_needed(
            model,
            loss.item(),
        )
Example #6
0
def test_train_dataset() -> None:
    dataset = WheatDataset(config.annot_file,
                           config.train_image_dir,
                           max_size=1024)
    image_id, img, boxes, _ = dataset[0]
    assert img.dtype == torch.float32
    assert boxes.dtype == torch.float32

    for i in range(10):
        _, img, boxes, _ = dataset[100]
        _, h, w = img.shape
        plot = DetectionPlot(figsize=(20, 20), w=w, h=h)
        plot.with_image(img)
        plot.with_yolo_boxes(boxes, color="red")
        plot.save(f"{config.working_dir}/test-dataset-{i}.png")
Example #7
0
def test_anchors(fsize: int, size: float, scales: List[float],
                 ratios: List[float]) -> None:
    h = fsize
    w = fsize
    images = ImageBatch(torch.zeros((1, 3, h, w), dtype=torch.float32))
    fn = Anchors(size=size, scales=scales, ratios=ratios)
    res = fn(images)
    num_anchors = len(scales) * len(ratios)
    anchor_count = w * h * num_anchors
    assert res.shape == (anchor_count, 4)
    offset = num_anchors * h * (w // 2) + num_anchors * h // 2
    ids = [offset + x for x in range(num_anchors)]
    plot = DetectionPlot(w=256, h=256)
    plot.with_yolo_boxes(YoloBoxes(res[ids]), color="red")
    plot.save(
        f"store/test-anchors-{fsize}-{size}-{'-'.join([str(x) for x in  scales])}-{num_anchors}.png"
    )
def test_mkcornermaps(h: int, w: int, cy: int, cx: int, dy: float, dx: float) -> None:
    in_boxes = YoloBoxes(torch.tensor([[0.201, 0.402, 0.1, 0.3]]))
    to_boxes = ToBoxes(threshold=0.1)
    mkmaps = MkCornerMaps()
    hm = mkmaps([in_boxes], (h, w), (h * 10, w * 10))
    assert hm.shape == (1, 1, h, w)
    mk_anchors = Anchors()
    anchormap = mk_anchors(hm)
    diffmaps = BoxMaps(torch.zeros((1, *anchormap.shape)))
    diffmaps = in_boxes.view(1, 4, 1, 1).expand_as(diffmaps) - anchormap

    out_box_batch, out_conf_batch = to_boxes((anchormap, diffmaps, hm))
    out_boxes = out_box_batch[0]
    for box in out_boxes:
        assert F.l1_loss(box, in_boxes[0]) < 1e-8
    plot = DetectionPlot(w=w, h=h)
    plot.with_image((hm[0, 0] + 1e-4).log())
    plot.with_yolo_boxes(out_boxes, color="red")
    plot.with_yolo_boxes(in_boxes, color="blue")
    plot.save(f"store/test-corner.png")
Example #9
0
 def __call__(
     self,
     src: Tuple[List[YoloBoxes], List[Confidences]],
     tgt: List[YoloBoxes],
     image_batch: ImageBatch,
 ) -> None:
     image_batch = ImageBatch(image_batch[:self.limit])
     tgt = tgt[:self.limit]
     src_box_batch, src_confidence_batch = src
     _, _, h, w = image_batch.shape
     for i, (img, sb, sc, tb) in enumerate(
             zip(image_batch, src_box_batch, src_confidence_batch, tgt)):
         plot = DetectionPlot(h=h,
                              w=w,
                              use_alpha=self.use_alpha,
                              show_probs=self.show_probs)
         plot.with_image(img, alpha=0.5)
         plot.with_yolo_boxes(tb, color="blue")
         plot.with_yolo_boxes(sb, sc, color="red")
         plot.save(f"{self.out_dir}/{self.prefix}-boxes-{i}.png")
def test_mkmaps(h: int, w: int, cy: int, cx: int, dy: float, dx: float) -> None:
    in_boxes = YoloBoxes(torch.tensor([[0.201, 0.402, 0.1, 0.3]]))
    to_boxes = ToBoxes(threshold=0.1)
    mkmaps = MkGaussianMaps(sigma=2.0)
    hm = mkmaps([in_boxes], (h, w), (h * 10, w * 10))
    assert (torch.nonzero(hm.eq(1), as_tuple=False)[0, 2:] - torch.tensor([[cy, cx]])).sum() == 0  # type: ignore
    assert hm.shape == (1, 1, h, w)
    mk_anchors = Anchors()
    anchormap = mk_anchors(hm)
    diffmaps = BoxMaps(torch.zeros((1, *anchormap.shape)))
    diffmaps = in_boxes.view(1, 4, 1, 1).expand_as(diffmaps) - anchormap

    out_box_batch, out_conf_batch = to_boxes((anchormap, diffmaps, hm))
    out_boxes = out_box_batch[0]
    for box in out_boxes:
        assert F.l1_loss(box, in_boxes[0]) < 1e-8
    plot = DetectionPlot(w=w, h=h)
    plot.with_image((hm[0, 0] + 1e-4).log())
    plot.with_yolo_boxes(in_boxes, color="blue")
    plot.with_yolo_boxes(out_boxes, color="red")
    plot.save(f"store/test-heatmapv1.png")