Example #1
0
def write_table(ex,f_re):
	global inner
	inner+=ocd.table_groesse(g,var,ex+offsets,"g")
	inner+=ocd.table_groesse(b,var,ex+offsets,"b")
	inner+=ocd.table_groesse(f,var,ex+offsets,"e")
	inner+=ocd.table_groesse(f,var,ex+offsets,"f")
	inner+=ocd.table_groesse(beta,var,ex+offsets,ur"beta")
	f_r= ocd.eval_expr(f,var,ex+offsets,"f")
	f_mean=np.mean(f_r.x.magnitude)
	f_std=np.std(f_r.x.magnitude)
	inner+=ur"Mittelwert: %.3f\\"%f_mean
	inner+=ur"Standartabweichung: %.3f\\" % np.std(f_r.x.magnitude)
	inner+=ur"gemessene Brechkraft: $\phi=\frac{1}{f}=%.3f +- %.3f\\ $"% ((1/f_mean),f_std/f_mean**2)

	inner+=ur"theoretische Brechkraft: %.3f\\ "% (1/f_re)
Example #2
0
import ocd
Werte=ocd.open_csv("versuch80/tabelle2.csv")
s_unten=sy.Symbol("s_unten")
s_oben=sy.Symbol("s_oben")
r_unten=sy.Symbol("r_unten")
r_oben=sy.Symbol("r_oben")
I=sy.Symbol("I")
U=sy.Symbol("U")
alpha_offset=sy.Symbol("alpha_offset")
alpha=sy.Symbol("alpha")

B=0.78*10**(-3)*I
import scipy.constants as c
wz=c.e/c.m_e*B/(2*sy.pi)
test=ocd.eval_expr(wz,[s_unten,s_oben,r_oben,I,U,alpha_offset,alpha],Werte,"test")
print str(test)
Example #3
0
import ocd
import sympy as sy
Werte=ocd.open_csv("versuch80/tabelle2.csv")
s_unten=sy.Symbol("s_unten")
s_oben=sy.Symbol("s_oben")
r_unten=sy.Symbol("r_unten")
r_oben=sy.Symbol("r_oben")
I=sy.Symbol("I")
U=sy.Symbol("U")
alpha_offset=sy.Symbol("alpha_offset")
alpha=sy.Symbol("alpha")
var=[s_unten,s_oben,r_oben,I,U,alpha_offset,alpha]
do =  lambda expr,name: ocd.eval_expr(expr,var,Werte,name)
plot = lambda expr1,expr2: ocd.plot_var(expr1,expr2,var,Werte)

B=0.78*10**(-3)*I
import scipy.constants as c
wz=c.e/c.m_e*B/(2*sy.pi)
d=r_oben-r_unten
s=s_oben-s_unten
y=s/(sy.pi*d)
alpha2=alpha-alpha_offset
x=sy.tan(alpha2)

plot(s_oben,s_unten)

Example #4
0
        ocd.plot_var(f,phi,var,messung23)
        f_ = np.linspace(0,300000,1000)
        plt.plot(f_,theo_delta(f_,14.39))
        plt.plot(f_,theo_delta(f_,3.33))
        plt.plot(f_,theo_delta(f_,6.57))
         
        
        plt.ylim(0,np.pi)
        plt.xlim(-0.1E5,3.1E5)
        plt.title(ur"Phasenverschiebung des getriebenen, gedämpften Oszillators")
        plt.xlabel("Frequenz in Hz")
        plt.ylabel("Phasenverschiebung in Radianten")

        plt.show()


v_ = ocd.Groesse("v","dimensionless",np.array([3.33]),np.array([0.3]))
w0_ = ocd.Groesse("w0","Hz",np.array([939E3]),np.array([3E3]))
L_ = ocd.Groesse("L","H",np.array([953E-6]),np.array([0]))
v = sy.Symbol("v")
w0 = sy.Symbol("w0")
L = sy.Symbol("L")
(R_, expr, Sexpr)=ocd.eval_expr(L*w0/v,[v,w0,L],[v_,w0_,L_],"R")
print "R=",R_
R = sy.Symbol("R")
var = [R,L,w0]
werte = [R_,L_,w0_]
(f_, expr, Sexpr) = ocd.eval_expr(sy.sqrt(w0**2-R**2/(4*L**2))/(2*sy.pi),var,werte,"f")
print f_
sy.pprint(Sexpr)
Example #5
0
import sympy as sy
import ocd
Werte=ocd.open_csv("tables/table1.csv")
t=sy.Symbol("t")
s1=sy.Symbol("s1")
s2=sy.Symbol("s2")
q=sy.Symbol("q")
f=(s1/t + s2/t )*q*sy.cos((s2/s1))
test=ocd.eval_expr(f,[t,s1,s2,q],Werte,"test")
print str(test)
Example #6
0
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
import ocd
Werte=[ocd.Groesse("l1","cm",np.array([4.62]),np.array([0.02])),ocd.Groesse("l2","cm",np.array([5.44]),np.array([0.05])),ocd.Groesse("l","cm",np.array([10]),np.array([0])),ocd.Groesse("Cb","F",np.array([48.5+107])*10**-9,np.array([0]))]

Werte2=[ocd.Groesse("l1","cm",np.array([6.95]),np.array([0.01])),ocd.Groesse("l2","cm",np.array([3.06]),np.array([0.02])),ocd.Groesse("l","cm",np.array([10]),np.array([0])),ocd.Groesse("Lb","H",np.array([4])*10**-3,np.array([0]))]

l1=sy.Symbol("l1")
l2=sy.Symbol("l2")
l=sy.Symbol("l")
Cb=sy.Symbol("Cb")
Lb=sy.Symbol("Lb")

Cx1=Cb*(l-l2)/l2
Cx2=Cb*l1/(l-l1)

Lx1=Lb*(l1)/(l-l1)
Lx2=Lb*(l-l2)/(l2)

(g,e,f)=ocd.eval_expr(Cx1,[l1,l2,l,Cb],Werte,"Cx")
(g,e,f)=ocd.eval_expr(Cx2,[l1,l2,l,Cb],Werte,"Cx")
(g,e,f)=ocd.eval_expr(Lx1,[l1,l2,l,Lb],Werte2,"Lx")
print g
sy.pprint(f)
(g,e,f)=ocd.eval_expr(Lx2,[l1,l2,l,Lb],Werte2,"Lx")
print g
sy.pprint(f)
Example #7
0
inner+=ur"Experiment III 1.\\ "
B=sy.Symbol("B")
B_orginal=sy.Symbol("B_orginal")
b__=sy.Symbol("b__")
b_=e_-b__+xs-xk
var+=[B,b__]
beta=B/B_orginal
inner+=ocd.table_groesse(b_,var,ex4+offsets,ur"b'")
inner+=ocd.table_groesse(b_,var,ex5+offsets,ur"b'")
inner+=ocd.table_groesse(beta,var,ex4+offsets,ur"beta")
inner+=ocd.table_groesse(beta,var,ex5+offsets,ur"beta")
plt.figure()
(a,b,Sa,Sb,Sy)=ocd.plot_var(b_,beta,var,ex4+offsets,True)
(a,b,Sa,Sb,Sy)=ocd.plot_var(b_,beta,var,ex5+offsets,True)
plt.xlim(0,0.9)
plt.ylim(0,7)
plt.xlabel(ur"b' in m ")
plt.ylabel(ur"$\beta$")
plt.title(ur"gemessene Brechkraft: $\phi=(%.3f \pm %.3f) \frac{1}{m}$ theoretische Brechkraft:  $\phi=%.3f \frac{1}{m}$"%(b,(Sb),(1/0.11429)))
plt.show()

f1=sy.Symbol("f1")
fges=sy.Symbol("fges")
d=sy.Symbol("d")
f2=fges*(f1-d)/(f1-fges)
container=[ocd.Groesse("f1","m",np.array([0.08]),np.array([0])),ocd.Groesse("d","m",np.array([0.02]),np.array([0.001])),ocd.Groesse("fges","m",np.array([0.119]),np.array([0.001]))]
print ocd.eval_expr(f2,[f1,fges,d],container,"f2")
#ocd.write_tex(inner)