def postprocess_batch_read_fd(template_file, plots=True):

    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)

    num = ref_cfg.radar.n_pulses - 1


    Doppler_av = np.zeros((np.size(No)*np.size(Time), np.size(inc_s),
                              np.size(azimuth_s), num), dtype=np.complex)

    coh_av = np.zeros((np.size(No)*np.size(Time), np.size(inc_s),
                              np.size(azimuth_s), num), dtype=np.complex)


    for iii in range(np.size(No)):
        path_m = ref_cfg.sim.path + os.sep + 'SKIM_12deg_rar_%d'%(No[iii])
        sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d'

        for ind_t in range(np.size(Time)):
            for ind_inc in range(np.size(inc_s)):
                for ind_azimuth in range(np.size(azimuth_s)):

                    # Read data
                    path = sim_path_ref % (Time[ind_t], inc_s[ind_inc], azimuth_s[ind_azimuth])

                    data = np.load(os.path.join(path, 'pp_data.nc.npz'))
                    Doppler_av[iii*np.size(Time) + ind_t, ind_inc, ind_azimuth, :] = data['dop_pp_avg']
                    coh_av[iii*np.size(Time)+ind_t, ind_inc, ind_azimuth, :] = data['coh']
    if ref_cfg.processing.Azi_img:
        np.save(os.path.join(ref_cfg.sim.path, 'Doppler_coherence_data_unfocus.npy'),
            [Doppler_av, coh_av, num])
    else:
        np.save(os.path.join(ref_cfg.sim.path, 'Doppler_coherence_data.npy'),
            [Doppler_av, coh_av, num])
def batch_sarsim(template_file):
    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)
    step = 0
    sim_path_ref = ref_cfg.sim.path + os.sep + 'sim_U%d_wdir%d_smag%d_sdir%d_inc%d_i%i'
    n_all = (np.size(v_wind_U) * np.size(v_wind_dir) * np.size(v_current_mag) *
             np.size(v_current_dir) * np.size(v_inc_angle) * n_rep)
    for wind_U in v_wind_U:
        for wind_dir in v_wind_dir:
            for current_mag in v_current_mag:
                for current_dir in v_current_dir:
                    for inc_angle in v_inc_angle:
                        for i_rep in np.arange(n_rep, dtype=np.int):
                            step = step + 1
                            print("")
                            print(
                                'CONFIGURATION AND LAUNCH OF SIMULATION %d of %d'
                                % (step, n_all))

                            ### CONFIGURATION FILE ###
                            # Load template
                            cfg = ref_cfg

                            # Modify template, create directory & save
                            cfg.sim.path = sim_path_ref % (
                                wind_U, wind_dir, current_mag, current_dir,
                                inc_angle, i_rep)
                            cfg.ocean.wind_U = wind_U
                            cfg.ocean.wind_dir = wind_dir
                            cfg.ocean.current_mag = current_mag
                            cfg.ocean.current_dir = current_dir
                            cfg.sar.inc_angle = inc_angle

                            if not os.path.exists(cfg.sim.path):
                                os.makedirs(cfg.sim.path)

                            # Save configuration file into an alternate file
                            cfg.save(cfg.sim.path + os.sep + cfg_file_name)

                            ### LAUNCH MACSAR ###
                            subprocess.call([
                                sys.executable, osr_script,
                                cfg.sim.path + os.sep + cfg_file_name
                            ])
Example #3
0
def sarsim(cfg_file=None):

    print(
        '-------------------------------------------------------------------',
        flush=True)
    print(time.strftime("OCEANSAR SAR Simulator [%Y-%m-%d %H:%M:%S]",
                        time.localtime()),
          flush=True)
    # print('Copyright (c) Gerard Marull Paretas, Paco López-Dekker')
    print(
        '-------------------------------------------------------------------',
        flush=True)
    cfg_file = utils.get_parFile(parfile=cfg_file)
    cfg = osrio.ConfigFile(cfg_file)
    # Create output directory if it doesnt exist already
    os.makedirs(cfg.sim.path, exist_ok=True)
    src_path = os.path.dirname(os.path.abspath(__file__))

    # RAW
    if cfg.sim.raw_run:

        print('Launching SAR RAW Generator...')

        args = [
            cfg.sim.mpi_exec, '-np',
            str(cfg.sim.mpi_num_proc), sys.executable,
            src_path + os.sep + 'sar_raw.py', '-c', cfg.cfg_file_name, '-o',
            cfg.sim.path + os.sep + cfg.sim.raw_file, '-oc',
            cfg.sim.path + os.sep + cfg.sim.ocean_file, '-er',
            cfg.sim.path + os.sep + cfg.sim.errors_file
        ]

        if cfg.sim.ocean_reuse:
            args.append('-ro')
        if cfg.sim.errors_reuse:
            args.append('-re')

        returncode = subprocess.call(args)

        if returncode != 0:
            raise Exception(
                'Something went wrong with SAR RAW Generator (return code %d)...'
                % returncode)

    # Processing
    if cfg.sim.proc_run:
        print('Launching SAR RAW Processor...')

        returncode = subprocess.call([
            sys.executable, src_path + os.sep + 'sar_processor.py', '-c',
            cfg.cfg_file_name, '-r', cfg.sim.path + os.sep + cfg.sim.raw_file,
            '-o', cfg.sim.path + os.sep + cfg.sim.proc_file
        ])

        if returncode != 0:
            raise Exception(
                'Something went wrong with SAR RAW Processor (return code %d)...'
                % returncode)

    # ATI
    if cfg.sim.corar_run:
        print('CoRAR Processing')

    if cfg.sim.ati_run:
        print('Launching SAR ATI Processor...')

        returncode = subprocess.call([
            sys.executable, src_path + os.sep + 'ati_processor.py', '-c',
            cfg.cfg_file_name, '-p', cfg.sim.path + os.sep + cfg.sim.proc_file,
            '-s', cfg.sim.path + os.sep + cfg.sim.ocean_file, '-o',
            cfg.sim.path + os.sep + cfg.sim.ati_file
        ])

        if returncode != 0:
            raise Exception(
                'Something went wrong with SAR ATI Processor (return code %d)...'
                % returncode)

    print('----------------------------------', flush=True)
    print(time.strftime("End of tasks [%Y-%m-%d %H:%M:%S]", time.localtime()),
          flush=True)
    print('----------------------------------', flush=True)
def batch_skimsim(template_file):

    for iii in range(np.size(No)):
        cfg_file = utils.get_parFile(parfile=template_file)
        ref_cfg = osrio.ConfigFile(cfg_file)
        path_m = ref_cfg.sim.path + os.sep + 'SKIM_12deg_rar_%d'%(No[iii])
        sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d'

        for t in Time:
            for inc_angle in inc_s:
                for azimuth in azimuth_s:

                    ### CONFIGURATION FILE ###
                    # Load template
                    cfg = ref_cfg

                    # Modify template, create directory & save
                    cfg.sim.path = sim_path_ref % (t, inc_angle, azimuth)
                    cfg.batch_Loop.t = t
                    cfg.radar.inc_angle = inc_angle
                    cfg.radar.azimuth = azimuth

                    if not os.path.exists(cfg.sim.path):
                        os.makedirs(cfg.sim.path)

                    # Save configuration file into an alternate file
                    cfg.save(cfg.sim.path + os.sep + cfg_file_name)

    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)
    step = 0
    sim_path_ref = ref_cfg.sim.path + os.sep + 'Time%d_inc_s%d_azimuth_s%d_wavelength%1f'
    n_all = (np.size(Time) * np.size(inc_s) *
             np.size(azimuth_s) * np.size(wave_scale)*n_rep)
    for t in Time:
        for inc_angle in inc_s:
            for azimuth in azimuth_s:
                for wave_length in wave_scale:
                    step = step + 1
                    print("")
                    print('CONFIGURATION AND LAUNCH OF SIMULATION %d of %d' % (step, n_all))

                    ### CONFIGURATION FILE ###
                    # Load template
                    cfg = ref_cfg

                    # Modify template, create directory & save
                    cfg.sim.path = sim_path_ref % (t, inc_angle, azimuth, wave_length)
                    cfg.batch_Loop.t = t
                    cfg.radar.inc_angle = inc_angle
                    cfg.radar.azimuth = azimuth
                    cfg.processing.wave_scale = wave_length


                    if not os.path.exists(cfg.sim.path):
                        os.makedirs(cfg.sim.path)

                    # Save configuration file into an alternate file
                    cfg.save(cfg.sim.path + os.sep + cfg_file_name)

                    ### LAUNCH MACSAR ###
                    subprocess.call([sys.executable, osr_script, '-c', cfg.sim.path + os.sep + cfg_file_name])
def postprocess_batch_read(template_file, plots=True):

    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)
    wave_scale = ref_cfg.processing.wave_scale
    path_m = ref_cfg.sim.path + os.sep + 'SKIM_12deg_rar_%d'%(No[0])
    if ref_cfg.processing.Azi_img:
        sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d' + os.sep + 'wavelength%.1f_unfocus'
    else:
        sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d' + os.sep + 'wavelength%.1f'

    path = sim_path_ref % (Time[0], inc_s[0], azimuth_s[0], wave_scale[0]) + os.sep + 'delta_k_spectrum_plots'
    data = np.load(os.path.join(path, 'Angular_velocity.npy'))

    analyse_num = data[3]
    si = data[2]

    Angular_velocity_curves = np.zeros((np.size(No)*np.size(Time), np.size(inc_s),
                              np.size(azimuth_s), np.size(wave_scale),
                              int(data[2])), dtype=np.complex)
    Angular_velocity_av = np.zeros((np.size(No)*np.size(Time), np.size(inc_s),
                              np.size(azimuth_s), np.size(wave_scale), 0), dtype=np.complex)
    Phase_velocity_curves = np.zeros((np.size(No)*np.size(Time), np.size(inc_s),
                              np.size(azimuth_s), np.size(wave_scale),
                              int(data[2])), dtype=np.complex)
    Phase_velocity_av = np.zeros((np.size(No)*np.size(Time), np.size(inc_s),
                              np.size(azimuth_s), np.size(wave_scale), 0), dtype=np.complex)


    for iii in range(np.size(No)):
        path_m = ref_cfg.sim.path + os.sep + 'SKIM_12deg_rar_%d'%(No[iii])
        if ref_cfg.processing.Azi_img:
            sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d' + os.sep + 'wavelength%.1f_unfocus'
        else:
            sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d' + os.sep + 'wavelength%.1f'

        for ind_t in range(np.size(Time)):
            for ind_inc in range(np.size(inc_s)):
                for ind_azimuth in range(np.size(azimuth_s)):
                    for ind_wavelength in range(np.size(wave_scale)):

                        # Read data
                        path = sim_path_ref % (Time[ind_t], inc_s[ind_inc], azimuth_s[ind_azimuth], wave_scale[ind_wavelength]) + os.sep + 'delta_k_spectrum_plots'

                        data = np.load(os.path.join(path, 'Angular_velocity.npy'))
                        Angular_velocity_curves[iii*np.size(Time) + ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data[0]
                        Angular_velocity_av[iii*np.size(Time)+ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data[1]

                        data_p = np.load(os.path.join(path, 'Phase_velocity.npy'))
                        Phase_velocity_curves[iii*np.size(Time)+ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data_p[0]
                        Phase_velocity_av[iii*np.size(Time)+ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data_p[1]

    if ref_cfg.processing.Azi_img:
        np.save(os.path.join(ref_cfg.sim.path, 'Angular_velocity_data_unfocus.npy'),
            [Angular_velocity_curves, Angular_velocity_av, si, analyse_num])

        np.save(os.path.join(ref_cfg.sim.path, 'Phase_velocity_data_unfocus.npy'),
            [Phase_velocity_curves,  Phase_velocity_av, si, analyse_num])
    else:
        np.save(os.path.join(ref_cfg.sim.path, 'Angular_velocity_data.npy'),
            [Angular_velocity_curves, Angular_velocity_av, si, analyse_num])

        np.save(os.path.join(ref_cfg.sim.path, 'Phase_velocity_data.npy'),
            [Phase_velocity_curves,  Phase_velocity_av, si, analyse_num])
def postprocess_batch_sim(template_file, plots=True):
    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)

    if cfg.processing.Azi_img:
        sim_path_ref = ref_cfg.sim.path + os.sep + 'Time%d_inc_s%d_azimuth_s%d' + os.sep + 'wavelength%.1f_unfocus'
    else:
        sim_path_ref = ref_cfg.sim.path + os.sep + 'Time%d_inc_s%d_azimuth_s%d' + os.sep + 'wavelength%.1f'

    wave_scale = ref_cfg.processing.wave_scale

    sim_path_ref = ref_cfg.sim.path + os.sep + 'Time%d_inc_s%d_azimuth_s%d_wavelength%1f'
    n_all = (np.size(Time) * np.size(inc_s) *
             np.size(azimuth_s) * np.size(wave_scale) * n_rep)

    sim_path_ref = ref_cfg.sim.path + os.sep + 'Time%d_inc_s%d_azimuth_s%d_wavelength%1f'
    n_all = (np.size(Time) * np.size(inc_s) *
             np.size(azimuth_s) * np.size(wave_scale) * n_rep)

    path = sim_path_ref % (Time[0], inc_s[0], azimuth_s[0], wave_scale[0]) + os.sep + 'delta_k_spectrum_plots'
    # Angular velocity
    data = np.load(os.path.join(path, 'Angular_velocity.npy'))
    Angular_velocity_curves = np.zeros((np.size(Time), np.size(inc_s),
                          np.size(azimuth_s), np.size(wave_scale),
                          int(data[2])), dtype=np.complex)
    Angular_velocity_av = np.zeros((np.size(Time), np.size(inc_s),
                          np.size(azimuth_s), np.size(wave_scale), 0), dtype=np.complex)
    analyse_num = data[3]

    # Phase velocity
    data_p = np.load(os.path.join(path, 'Phase_velocity.npy'))
    Phase_velocity_curves = np.zeros((np.size(Time), np.size(inc_s),
                          np.size(azimuth_s), np.size(wave_scale),
                          int(data_p[2])), dtype=np.complex)
    Phase_velocity_av = np.zeros((np.size(Time), np.size(inc_s),
                          np.size(azimuth_s), np.size(wave_scale), 0), dtype=np.complex)

    for ind_t in range(np.size(Time)):
        for ind_inc in range(np.size(inc_s)):
            for ind_azimuth in range(np.size(azimuth_s)):
                for ind_wavelength in range(np.size(wave_scale)):

                    # Read data
                    path = sim_path_ref % (Time[ind_t], inc_s[ind_inc], azimuth_s[ind_azimuth], wave_scale[ind_wavelength]) + os.sep + 'delta_k_spectrum_plots'

                    data = np.load(os.path.join(path, 'Angular_velocity.npy'))
                    Angular_velocity_curves[ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data[0]
                    Angular_velocity_av[ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data[1]

                    data_p = np.load(os.path.join(path, 'Phase_velocity.npy'))
                    Phase_velocity_curves[ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data_p[0]
                    Phase_velocity_av[ind_t, ind_inc, ind_azimuth, ind_wavelength, :] = data_p[1]


    plot_path = sim_path_ref + os.sep + 'Averaging_through_time'
    for ind_inc in range(np.size(inc_s)):
         for ind_azimuth in range(np.size(azimuth_s)):
              for ind_wavelength in range(np.size(wave_scale)):
                     value = np.mean(Angular_velocity_curves[:, ind_inc, ind_azimuth, ind_wavelength, :], axis=0)
                     av_value = np.mean( Angular_velocity_av[ind_t, ind_inc, ind_azimuth, ind_wavelength, :],axis=0)

                     value_p = np.mean(Phase_velocity_curves[:, ind_inc, ind_azimuth, ind_wavelength, :], axis=0)
                     av_value_p = np.mean( Phase_velocity_av[ind_t, ind_inc, ind_azimuth, ind_wavelength, :],axis=0)

                     print(inc_s[ind_inc],'deg')
                     print(azimuth_s[ind_azimuth],'deg')
                     print(wave_scale[ind_wavelength],'m')
                     print(av_value,'rad/s')
                     print(av_value,'m/s')


                     if plots:
                         plt.figure()
                         plt.plot(analyse_num, value)
                         plt.xlabel("Azimuth interval [Pixel]")
                         plt.ylabel("Angular velocity (rad/s)")
                         plt.title("Incidence angle = %d deg, Azimuth angle = %d deg, wave_length = %.1f m" % (inc_s[ind_inc], azimuth_s[ind_azimuth], wave_scale[ind_wavelength]))

                         plt.savefig(os.path.join(ref_cfg.sim.path, 'Time_averaging_angular_velocity_%d_%d_%.1f.png' % (inc_s[ind_inc], azimuth_s[ind_azimuth], wave_scale[ind_wavelength])))
                         plt.close()

                         plt.figure()
                         plt.plot(analyse_num, value_p)
                         plt.xlabel("Azimuth interval [Pixel]")
                         plt.ylabel("Phase velocity (m/s)")
                         plt.title("Incidence angle = %d deg, Azimuth angle = %d deg, wave_length = %.1f m" % (inc_s[ind_inc], azimuth_s[ind_azimuth], wave_scale[ind_wavelength]))

                         plt.savefig(os.path.join(ref_cfg.sim.path, 'Time_averaging_angular_velocity_%d_%d_%.1f.png' % (inc_s[ind_inc], azimuth_s[ind_azimuth], wave_scale[ind_wavelength])))
                         plt.close()
Example #7
0
def sarraw(cfg_file, output_file, ocean_file, reuse_ocean_file, errors_file,
           reuse_errors_file):

    ###################
    # INITIALIZATIONS #
    ###################

    ## MPI SETUP
    comm = MPI.COMM_WORLD
    size, rank = comm.Get_size(), comm.Get_rank()

    ## WELCOME
    if rank == 0:
        print(
            '-------------------------------------------------------------------'
        )
        print((time.strftime("- OCEANSAR SAR RAW GENERATOR: %Y-%m-%d %H:%M:%S",
                             time.localtime())))
        print('- Copyright (c) Gerard Marull Paretas, Paco Lopez Dekker')
        print(
            '-------------------------------------------------------------------'
        )

    ## CONFIGURATION FILE
    # Note: variables are 'copied' to reduce code verbosity
    cfg = tpio.ConfigFile(cfg_file)

    # RAW
    wh_tol = cfg.srg.wh_tol
    nesz = cfg.srg.nesz
    use_hmtf = cfg.srg.use_hmtf
    scat_spec_enable = cfg.srg.scat_spec_enable
    scat_spec_mode = cfg.srg.scat_spec_mode
    scat_bragg_enable = cfg.srg.scat_bragg_enable
    scat_bragg_model = cfg.srg.scat_bragg_model
    scat_bragg_d = cfg.srg.scat_bragg_d
    scat_bragg_spec = cfg.srg.scat_bragg_spec
    scat_bragg_spread = cfg.srg.scat_bragg_spread

    # SAR
    inc_angle = np.deg2rad(cfg.sar.inc_angle)
    f0 = cfg.sar.f0
    pol = cfg.sar.pol
    if pol == 'DP':
        do_hh = True
        do_vv = True
    elif pol == 'hh':
        do_hh = True
        do_vv = False
    else:
        do_hh = False
        do_vv = True

    prf = cfg.sar.prf
    num_ch = int(cfg.sar.num_ch)
    ant_L = cfg.sar.ant_L
    alt = cfg.sar.alt
    v_ground = cfg.sar.v_ground
    rg_bw = cfg.sar.rg_bw
    over_fs = cfg.sar.over_fs
    sigma_n_tx = cfg.sar.sigma_n_tx
    phase_n_tx = np.deg2rad(cfg.sar.phase_n_tx)
    sigma_beta_tx = cfg.sar.sigma_beta_tx
    phase_beta_tx = np.deg2rad(cfg.sar.phase_beta_tx)
    sigma_n_rx = cfg.sar.sigma_n_rx
    phase_n_rx = np.deg2rad(cfg.sar.phase_n_rx)
    sigma_beta_rx = cfg.sar.sigma_beta_rx
    phase_beta_rx = np.deg2rad(cfg.sar.phase_beta_rx)

    # OCEAN / OTHERS
    ocean_dt = cfg.ocean.dt

    add_point_target = False
    use_numba = True
    n_sinc_samples = 8
    sinc_ovs = 20
    chan_sinc_vec = raw.calc_sinc_vec(n_sinc_samples, sinc_ovs, Fs=over_fs)
    # OCEAN SURFACE
    if rank == 0:
        print('Initializing ocean surface...')

        surface_full = OceanSurface()

        # Setup compute values
        compute = ['D', 'Diff', 'Diff2']
        if use_hmtf:
            compute.append('hMTF')

        # Try to reuse initialized surface
        if reuse_ocean_file:
            try:
                surface_full.load(ocean_file, compute)
            except RuntimeError:
                pass

        if (not reuse_ocean_file) or (not surface_full.initialized):
            surface_full.init(cfg.ocean.Lx,
                              cfg.ocean.Ly,
                              cfg.ocean.dx,
                              cfg.ocean.dy,
                              cfg.ocean.cutoff_wl,
                              cfg.ocean.spec_model,
                              cfg.ocean.spread_model,
                              np.deg2rad(cfg.ocean.wind_dir),
                              cfg.ocean.wind_fetch,
                              cfg.ocean.wind_U,
                              cfg.ocean.current_mag,
                              np.deg2rad(cfg.ocean.current_dir),
                              cfg.ocean.swell_enable,
                              cfg.ocean.swell_ampl,
                              np.deg2rad(cfg.ocean.swell_dir),
                              cfg.ocean.swell_wl,
                              compute,
                              cfg.ocean.opt_res,
                              cfg.ocean.fft_max_prime,
                              choppy_enable=cfg.ocean.choppy_enable)

            surface_full.save(ocean_file)

    else:
        surface_full = None

    # Initialize surface balancer
    surface = OceanSurfaceBalancer(surface_full, ocean_dt)

    # CALCULATE PARAMETERS
    if rank == 0:
        print('Initializing simulation parameters...')

    # SR/GR/INC Matrixes
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    gr0 = geosar.inc_to_gr(inc_angle, alt)
    gr = surface.x + gr0
    sr, inc, _ = geosar.gr_to_geo(gr, alt)
    sr -= np.min(sr)
    #inc = np.repeat(inc[np.newaxis, :], surface.Ny, axis=0)
    #sr = np.repeat(sr[np.newaxis, :], surface.Ny, axis=0)
    #gr = np.repeat(gr[np.newaxis, :], surface.Ny, axis=0)
    #Let's try to safe some memory and some operations
    inc = inc.reshape(1, inc.size)
    sr = sr.reshape(1, sr.size)
    gr = gr.reshape(1, gr.size)
    sin_inc = np.sin(inc)
    cos_inc = np.cos(inc)

    # lambda, K, resolution, time, etc.
    l0 = const.c / f0
    k0 = 2. * np.pi * f0 / const.c
    sr_res = const.c / (2. * rg_bw)
    if cfg.sar.L_total:
        ant_L = ant_L / np.float(num_ch)
        d_chan = ant_L
    else:
        if np.float(cfg.sar.Spacing) != 0:
            d_chan = np.float(cfg.sar.Spacing)
        else:
            d_chan = ant_L

    if v_ground == 'auto':
        v_ground = geosar.orbit_to_vel(alt, ground=True)
    t_step = 1. / prf
    t_span = (1.5 * (sr0 * l0 / ant_L) + surface.Ly) / v_ground
    az_steps = np.int(np.floor(t_span / t_step))

    # Number of RG samples
    max_sr = np.max(sr) + wh_tol + (np.max(surface.y_full) +
                                    (t_span / 2.) * v_ground)**2. / (2. * sr0)
    min_sr = np.min(sr) - wh_tol
    rg_samp_orig = np.int(np.ceil(((max_sr - min_sr) / sr_res) * over_fs))
    rg_samp = np.int(utils.optimize_fftsize(rg_samp_orig))

    # Other initializations
    if do_hh:
        proc_raw_hh = np.zeros([num_ch, az_steps, rg_samp], dtype=np.complex)
    if do_vv:
        proc_raw_vv = np.zeros([num_ch, az_steps, rg_samp], dtype=np.complex)
    t_last_rcs_bragg = -1.
    last_progress = -1
    NRCS_avg_vv = np.zeros(az_steps, dtype=np.float)
    NRCS_avg_hh = np.zeros(az_steps, dtype=np.float)

    ## RCS MODELS
    # Specular
    if scat_spec_enable:
        if scat_spec_mode == 'kodis':
            rcs_spec = rcs.RCSKodis(inc, k0, surface.dx, surface.dy)
        elif scat_spec_mode == 'fa' or scat_spec_mode == 'spa':
            spec_ph0 = np.random.uniform(0.,
                                         2. * np.pi,
                                         size=[surface.Ny, surface.Nx])
            rcs_spec = rcs.RCSKA(scat_spec_mode, k0, surface.x, surface.y,
                                 surface.dx, surface.dy)
        else:
            raise NotImplementedError(
                'RCS mode %s for specular scattering not implemented' %
                scat_spec_mode)

    # Bragg
    if scat_bragg_enable:
        phase_bragg = np.zeros([2, surface.Ny, surface.Nx])
        bragg_scats = np.zeros([2, surface.Ny, surface.Nx], dtype=np.complex)
        # dop_phase_p = np.random.uniform(0., 2.*np.pi, size=[surface.Ny, surface.Nx])
        # dop_phase_m = np.random.uniform(0., 2.*np.pi, size=[surface.Ny, surface.Nx])
        tau_c = closure.grid_coherence(cfg.ocean.wind_U, surface.dx, f0)
        rndscat_p = closure.randomscat_ts(tau_c, (surface.Ny, surface.Nx), prf)
        rndscat_m = closure.randomscat_ts(tau_c, (surface.Ny, surface.Nx), prf)
        # NOTE: This ignores slope, may be changed
        k_b = 2. * k0 * sin_inc
        c_b = sin_inc * np.sqrt(const.g / k_b + 0.072e-3 * k_b)

        if scat_bragg_model == 'romeiser97':
            current_dir = np.deg2rad(cfg.ocean.current_dir)
            current_vec = (cfg.ocean.current_mag * np.array(
                [np.cos(current_dir), np.sin(current_dir)]))
            U_dir = np.deg2rad(cfg.ocean.wind_dir)
            U_vec = (cfg.ocean.wind_U *
                     np.array([np.cos(U_dir), np.sin(U_dir)]))
            U_eff_vec = U_vec - current_vec

            rcs_bragg = rcs.RCSRomeiser97(
                k0, inc, pol, surface.dx, surface.dy, linalg.norm(U_eff_vec),
                np.arctan2(U_eff_vec[1], U_eff_vec[0]), surface.wind_fetch,
                scat_bragg_spec, scat_bragg_spread, scat_bragg_d)
        else:
            raise NotImplementedError(
                'RCS model %s for Bragg scattering not implemented' %
                scat_bragg_model)

    surface_area = surface.dx * surface.dy * surface.Nx * surface.Ny
    ###################
    # SIMULATION LOOP #
    ###################
    if rank == 0:
        print('Computing profiles...')

    for az_step in np.arange(az_steps, dtype=np.int):

        ## AZIMUTH & SURFACE UPDATE
        t_now = az_step * t_step
        az_now = (t_now - t_span / 2.) * v_ground
        # az = np.repeat((surface.y - az_now)[:, np.newaxis], surface.Nx, axis=1)
        az = (surface.y - az_now).reshape((surface.Ny, 1))
        surface.t = t_now

        ## COMPUTE RCS FOR EACH MODEL
        # Note: SAR processing is range independent as slant range is fixed
        sin_az = az / sr0
        az_proj_angle = np.arcsin(az / gr0)

        # Note: Projected displacements are added to slant range
        sr_surface = (sr - cos_inc * surface.Dz + az / 2 * sin_az +
                      surface.Dx * sin_inc + surface.Dy * sin_az)

        if do_hh:
            scene_hh = np.zeros(
                [int(surface.Ny), int(surface.Nx)], dtype=np.complex)
        if do_vv:
            scene_vv = np.zeros(
                [int(surface.Ny), int(surface.Nx)], dtype=np.complex)
        # Point target
        if add_point_target and rank == 0:
            sr_pt = (sr[0, surface.Nx / 2] + az[surface.Ny / 2, 0] / 2 *
                     sin_az[surface.Ny / 2, surface.Nx / 2])
            pt_scat = (100. * np.exp(-1j * 2. * k0 * sr_pt))
            if do_hh:
                scene_hh[surface.Ny / 2, surface.Nx / 2] = pt_scat
            if do_vv:
                scene_vv[surface.Ny / 2, surface.Nx / 2] = pt_scat
            sr_surface[surface.Ny / 2, surface.Nx / 2] = sr_pt

        # Specular
        if scat_spec_enable:
            if scat_spec_mode == 'kodis':
                Esn_sp = np.sqrt(4. * np.pi) * rcs_spec.field(
                    az_proj_angle, sr_surface, surface.Diffx, surface.Diffy,
                    surface.Diffxx, surface.Diffyy, surface.Diffxy)
                if do_hh:
                    scene_hh += Esn_sp
                if do_vv:
                    scene_vv += Esn_sp
            else:
                # FIXME
                if do_hh:
                    pol_tmp = 'hh'
                    Esn_sp = (
                        np.exp(-1j * (2. * k0 * sr_surface)) *
                        (4. * np.pi)**1.5 * rcs_spec.field(
                            1, 1, pol_tmp[0], pol_tmp[1], inc, inc,
                            az_proj_angle, az_proj_angle + np.pi, surface.Dz,
                            surface.Diffx, surface.Diffy, surface.Diffxx,
                            surface.Diffyy, surface.Diffxy))
                    scene_hh += Esn_sp
                if do_vv:
                    pol_tmp = 'vv'
                    Esn_sp = (
                        np.exp(-1j * (2. * k0 * sr_surface)) *
                        (4. * np.pi)**1.5 * rcs_spec.field(
                            1, 1, pol_tmp[0], pol_tmp[1], inc, inc,
                            az_proj_angle, az_proj_angle + np.pi, surface.Dz,
                            surface.Diffx, surface.Diffy, surface.Diffxx,
                            surface.Diffyy, surface.Diffxy))
                    scene_vv += Esn_sp
            NRCS_avg_hh[az_step] += (np.sum(np.abs(Esn_sp)**2) / surface_area)
            NRCS_avg_vv[az_step] += NRCS_avg_hh[az_step]

        # Bragg
        if scat_bragg_enable:
            if (t_now - t_last_rcs_bragg) > ocean_dt:

                if scat_bragg_model == 'romeiser97':
                    if pol == 'DP':
                        RCS_bragg_hh, RCS_bragg_vv = rcs_bragg.rcs(
                            az_proj_angle, surface.Diffx, surface.Diffy)
                    elif pol == 'hh':
                        RCS_bragg_hh = rcs_bragg.rcs(az_proj_angle,
                                                     surface.Diffx,
                                                     surface.Diffy)
                    else:
                        RCS_bragg_vv = rcs_bragg.rcs(az_proj_angle,
                                                     surface.Diffx,
                                                     surface.Diffy)

                if use_hmtf:
                    # Fix Bad MTF points
                    surface.hMTF[np.where(surface.hMTF < -1)] = -1
                    if do_hh:
                        RCS_bragg_hh[0] *= (1 + surface.hMTF)
                        RCS_bragg_hh[1] *= (1 + surface.hMTF)
                    if do_vv:
                        RCS_bragg_vv[0] *= (1 + surface.hMTF)
                        RCS_bragg_vv[1] *= (1 + surface.hMTF)

                t_last_rcs_bragg = t_now

            if do_hh:
                scat_bragg_hh = np.sqrt(RCS_bragg_hh)
                NRCS_bragg_hh_instant_avg = np.sum(RCS_bragg_hh) / surface_area
                NRCS_avg_hh[az_step] += NRCS_bragg_hh_instant_avg
            if do_vv:
                scat_bragg_vv = np.sqrt(RCS_bragg_vv)
                NRCS_bragg_vv_instant_avg = np.sum(RCS_bragg_vv) / surface_area
                NRCS_avg_vv[az_step] += NRCS_bragg_vv_instant_avg

            # Doppler phases (Note: Bragg radial velocity taken constant!)
            surf_phase = -(2 * k0) * sr_surface
            cap_phase = (2 * k0) * t_step * c_b * (az_step + 1)
            phase_bragg[0] = surf_phase - cap_phase  # + dop_phase_p
            phase_bragg[1] = surf_phase + cap_phase  # + dop_phase_m
            bragg_scats[0] = rndscat_m.scats(t_now)
            bragg_scats[1] = rndscat_p.scats(t_now)
            if do_hh:
                scene_hh += ne.evaluate(
                    'sum(scat_bragg_hh * exp(1j*phase_bragg) * bragg_scats, axis=0)'
                )
            if do_vv:
                scene_vv += ne.evaluate(
                    'sum(scat_bragg_vv * exp(1j*phase_bragg) * bragg_scats, axis=0)'
                )

        ## ANTENNA PATTERN

        if cfg.sar.L_total:
            beam_pattern = sinc_1tx_nrx(sin_az,
                                        ant_L * num_ch,
                                        f0,
                                        num_ch,
                                        field=True)
        else:
            beam_pattern = sinc_1tx_nrx(sin_az, ant_L, f0, 1, field=True)

        ## GENERATE CHANEL PROFILES
        for ch in np.arange(num_ch, dtype=np.int):

            if do_hh:
                scene_bp = scene_hh * beam_pattern
                # Add channel phase & compute profile
                scene_bp *= np.exp(-1j * k0 * d_chan * ch * sin_az)
                if use_numba:
                    raw.chan_profile_numba(sr_surface.flatten(),
                                           scene_bp.flatten(),
                                           sr_res / (over_fs), min_sr,
                                           chan_sinc_vec, n_sinc_samples,
                                           sinc_ovs, proc_raw_hh[ch][az_step])

                else:
                    raw.chan_profile_weave(sr_surface.flatten(),
                                           scene_bp.flatten(),
                                           sr_res / (over_fs), min_sr,
                                           chan_sinc_vec, n_sinc_samples,
                                           sinc_ovs, proc_raw_hh[ch][az_step])
            if do_vv:
                scene_bp = scene_vv * beam_pattern
                # Add channel phase & compute profile
                scene_bp *= np.exp(-1j * k0 * d_chan * ch * sin_az)
                if use_numba:
                    raw.chan_profile_numba(sr_surface.flatten(),
                                           scene_bp.flatten(),
                                           sr_res / (over_fs), min_sr,
                                           chan_sinc_vec, n_sinc_samples,
                                           sinc_ovs, proc_raw_vv[ch][az_step])

                else:
                    raw.chan_profile_weave(sr_surface.flatten(),
                                           scene_bp.flatten(),
                                           sr_res / (over_fs), min_sr,
                                           chan_sinc_vec, n_sinc_samples,
                                           sinc_ovs, proc_raw_vv[ch][az_step])

        # SHOW PROGRESS (%)
        current_progress = np.int((100 * az_step) / az_steps)
        if current_progress != last_progress:
            last_progress = current_progress
            print(('SP,%d,%d,%d' % (rank, size, current_progress)))

    # MERGE RESULTS
    if do_hh:
        total_raw_hh = np.empty_like(proc_raw_hh) if rank == 0 else None
        comm.Reduce(proc_raw_hh, total_raw_hh, op=MPI.SUM, root=0)
    if do_vv:
        total_raw_vv = np.empty_like(proc_raw_vv) if rank == 0 else None
        comm.Reduce(proc_raw_vv, total_raw_vv, op=MPI.SUM, root=0)

    ## PROCESS REDUCED RAW DATA & SAVE (ROOT)
    if rank == 0:
        print('Processing and saving results...')

        # Filter and decimate
        #range_filter = np.ones_like(total_raw)
        #range_filter[:, :, rg_samp/(2*2*cfg.sar.over_fs):-rg_samp/(2*2*cfg.sar.over_fs)] = 0

        #total_raw = np.fft.ifft(range_filter*np.fft.fft(total_raw))
        if do_hh:
            total_raw_hh = total_raw_hh[:, :, :rg_samp_orig]
        if do_vv:
            total_raw_vv = total_raw_vv[:, :, :rg_samp_orig]

        # Calibration factor (projected antenna pattern integrated in azimuth)
        az_axis = np.arange(-t_span / 2. * v_ground, t_span / 2. * v_ground,
                            sr0 * const.c / (np.pi * f0 * ant_L * 10.))

        if cfg.sar.L_total:
            pattern = sinc_1tx_nrx(az_axis / sr0,
                                   ant_L * num_ch,
                                   f0,
                                   num_ch,
                                   field=True)
        else:
            pattern = sinc_1tx_nrx(az_axis / sr0, ant_L, f0, 1, field=True)
        cal_factor = (1. / np.sqrt(
            np.trapz(np.abs(pattern)**2., az_axis) * sr_res /
            np.sin(inc_angle)))

        if do_hh:
            noise = (utils.db2lin(nesz, amplitude=True) / np.sqrt(2.) *
                     (np.random.normal(size=total_raw_hh.shape) +
                      1j * np.random.normal(size=total_raw_hh.shape)))
            total_raw_hh = total_raw_hh * cal_factor + noise
        if do_vv:
            noise = (utils.db2lin(nesz, amplitude=True) / np.sqrt(2.) *
                     (np.random.normal(size=total_raw_vv.shape) +
                      1j * np.random.normal(size=total_raw_vv.shape)))
            total_raw_vv = total_raw_vv * cal_factor + noise

        # Add slow-time error
        # if use_errors:
        #     if do_hh:
        #         total_raw_hh *= errors.beta_noise
        #     if do_vv:
        #         total_raw_vv *= errors.beta_noise

        # Save RAW data (and other properties, used by 3rd party software)
        if do_hh and do_vv:
            rshp = (1, ) + total_raw_hh.shape
            total_raw = np.concatenate(
                (total_raw_hh.reshape(rshp), total_raw_vv.reshape(rshp)))
            rshp = (1, ) + NRCS_avg_hh.shape
            NRCS_avg = np.concatenate(
                (NRCS_avg_hh.reshape(rshp), NRCS_avg_vv.reshape(rshp)))
        elif do_hh:
            rshp = (1, ) + total_raw_hh.shape
            total_raw = total_raw_hh.reshape(rshp)
            rshp = (1, ) + NRCS_avg_hh.shape
            NRCS_avg = NRCS_avg_hh.reshape(rshp)
        else:
            rshp = (1, ) + total_raw_vv.shape
            total_raw = total_raw_vv.reshape(rshp)
            rshp = (1, ) + NRCS_avg_vv.shape
            NRCS_avg = NRCS_avg_vv.reshape(rshp)

        raw_file = tpio.RawFile(output_file, 'w', total_raw.shape)
        raw_file.set('inc_angle', np.rad2deg(inc_angle))
        raw_file.set('f0', f0)
        raw_file.set('num_ch', num_ch)
        raw_file.set('ant_L', ant_L)
        raw_file.set('prf', prf)
        raw_file.set('v_ground', v_ground)
        raw_file.set('orbit_alt', alt)
        raw_file.set('sr0', sr0)
        raw_file.set('rg_sampling', rg_bw * over_fs)
        raw_file.set('rg_bw', rg_bw)
        raw_file.set('raw_data*', total_raw)
        raw_file.set('NRCS_avg', NRCS_avg)
        raw_file.close()

        print((time.strftime("Finished [%Y-%m-%d %H:%M:%S]",
                             time.localtime())))
def postprocess_batch_sim(template_file,
                          plots=True,
                          fontsize=14,
                          pltsymb=['o', 'D', 's', '^', 'p']):
    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)
    step = 0
    npol = (2 if ref_cfg.sar.pol == 'DP' else 1)
    nch = int(ref_cfg.sar.num_ch)
    nim = nch * npol

    sim_path_ref = ref_cfg.sim.path + os.sep + 'sim_U%d_wdir%d_smag%d_sdir%d_inc%d_i%i'
    n_all = (np.size(v_wind_U) * np.size(v_wind_dir) * np.size(v_current_mag) *
             np.size(v_current_dir) * np.size(v_inc_angle) * n_rep)
    mean_cohs = np.zeros(
        (np.size(v_wind_U), np.size(v_wind_dir), np.size(v_current_mag),
         np.size(v_current_dir), np.size(v_inc_angle), n_rep,
         int((nim) * (nim - 1) / 2)),
        dtype=np.complex)
    mean_abscohs = np.zeros(
        (np.size(v_wind_U), np.size(v_wind_dir), np.size(v_current_mag),
         np.size(v_current_dir), np.size(v_inc_angle), n_rep,
         int((nim) * (nim - 1) / 2)),
        dtype=np.float)
    nrcs = np.zeros(
        (np.size(v_wind_U), np.size(v_wind_dir), np.size(v_current_mag),
         np.size(v_current_dir), np.size(v_inc_angle), n_rep, nch * npol),
        dtype=np.float)
    v_r_dop = np.zeros(
        (np.size(v_wind_U), np.size(v_wind_dir), np.size(v_current_mag),
         np.size(v_current_dir), np.size(v_inc_angle), n_rep, npol),
        dtype=np.float)
    for ind_w_U in range(np.size(v_wind_U)):
        for ind_w_dir in range(np.size(v_wind_dir)):
            for ind_c_mag in range(np.size(v_current_mag)):
                for ind_c_dir in range(np.size(v_current_dir)):
                    for ind_inc in range(np.size(v_inc_angle)):
                        for i_rep in range(n_rep):
                            # Read data
                            path = sim_path_ref % (v_wind_U[ind_w_U],
                                                   v_wind_dir[ind_w_dir],
                                                   v_current_mag[ind_c_mag],
                                                   v_current_dir[ind_c_dir],
                                                   v_inc_angle[ind_inc], i_rep)
                            try:
                                data_filename = os.path.join(
                                    path, 'ati_stats.npz')
                                npzfile = np.load(data_filename)
                                mean_cohs[ind_w_U, ind_w_dir, ind_c_mag,
                                          ind_c_dir, ind_inc,
                                          i_rep] = npzfile['coh_mean']
                                mean_abscohs[ind_w_U, ind_w_dir, ind_c_mag,
                                             ind_c_dir, ind_inc,
                                             i_rep] = npzfile['abscoh_mean']
                                nrcs[ind_w_U, ind_w_dir, ind_c_mag, ind_c_dir,
                                     ind_inc, i_rep] = npzfile['nrcs']
                                v_r_dop[ind_w_U, ind_w_dir, ind_c_mag,
                                        ind_c_dir, ind_inc,
                                        i_rep] = npzfile['v_r_dop']
                                coh_lut = npzfile['coh_lut']
                            except OSError:
                                print("Issues with %s" % data_filename)
                                mean_cohs[ind_w_U, ind_w_dir, ind_c_mag,
                                          ind_c_dir, ind_inc, i_rep] = np.NaN
                                mean_abscohs[ind_w_U, ind_w_dir, ind_c_mag,
                                             ind_c_dir, ind_inc,
                                             i_rep] = np.NaN
                                nrcs[ind_w_U, ind_w_dir, ind_c_mag, ind_c_dir,
                                     ind_inc, i_rep] = np.NaN
                                v_r_dop[ind_w_U, ind_w_dir, ind_c_mag,
                                        ind_c_dir, ind_inc, i_rep] = np.NaN
    if plots:
        font = {'family': "Arial", 'weight': 'normal', 'size': fontsize}
        mpl.rc('font', **font)

        plt.figure()
        for ind in range(np.size(v_wind_U)):
            plt.plot(v_wind_dir, (mean_abscohs[ind, :, 0, 0, 0, 0, 4]),
                     pltsymb[int(np.mod(ind, len(pltsymb)))],
                     label=("U = %2.1f" % (v_wind_U[ind])))
        plt.xlabel("Wind direction w.r.t. radar LOS [deg]")
        plt.ylabel("$\gamma$")
        plt.legend(loc=0)
        plt.grid(True)
        plt.tight_layout()

        plt.figure()
        for ind in range(np.size(v_wind_U)):
            plt.plot(v_wind_dir,
                     v_r_dop[ind, :, 0, 0, 0, 0, 1],
                     pltsymb[int(np.mod(ind, len(pltsymb)))],
                     label=("U = %2.1f" % (v_wind_U[ind])))

        plt.xlabel("Wind direction w.r.t. radar LOS [deg]")
        plt.ylabel("$v_{Dop} [m/s]$")
        plt.legend(loc=0)
        plt.grid(True)
        plt.tight_layout()

        plt.figure()
        for ind in range(np.size(v_wind_U)):
            plt.plot(v_wind_dir,
                     nrcs[ind, :, 0, 0, 0, 0, 1],
                     pltsymb[int(np.mod(ind, len(pltsymb)))],
                     label=("U = %2.1f" % (v_wind_U[ind])))

        plt.xlabel("Wind direction w.r.t. radar LOS [deg]")
        plt.ylabel("$NRCS [dB]$")
        plt.legend(loc=0)
        plt.grid(True)
        plt.tight_layout()

    return mean_cohs, mean_abscohs, v_r_dop, nrcs, coh_lut
Example #9
0
def ati_process(cfg_file, proc_output_file, ocean_file, output_file):

    print(
        '-------------------------------------------------------------------')
    print((time.strftime("- OCEANSAR ATI Processor: [%Y-%m-%d %H:%M:%S]",
                         time.localtime())))
    print(
        '-------------------------------------------------------------------')

    print('Initializing...')

    ## CONFIGURATION FILE
    cfg = tpio.ConfigFile(cfg_file)

    # SAR
    inc_angle = np.deg2rad(cfg.sar.inc_angle)
    f0 = cfg.sar.f0
    prf = cfg.sar.prf
    num_ch = cfg.sar.num_ch
    ant_L = cfg.sar.ant_L
    alt = cfg.sar.alt
    v_ground = cfg.sar.v_ground
    rg_bw = cfg.sar.rg_bw
    over_fs = cfg.sar.over_fs
    pol = cfg.sar.pol
    if pol == 'DP':
        polt = ['hh', 'vv']
    elif pol == 'hh':
        polt = ['hh']
    else:
        polt = ['vv']
    # ATI
    multilooking = cfg.ati.multilooking
    plot_save = cfg.ati.plot_save
    plot_path = cfg.ati.plot_path
    plot_format = cfg.ati.plot_format
    plot_tex = cfg.ati.plot_tex
    plot_surface = cfg.ati.plot_surface
    plot_proc_ampl = cfg.ati.plot_proc_ampl
    plot_coh = cfg.ati.plot_coh
    plot_coh_all = cfg.ati.plot_coh_all
    plot_ati_phase = cfg.ati.plot_ati_phase
    plot_ati_phase_all = cfg.ati.plot_ati_phase_all
    plot_vel_hist = cfg.ati.plot_vel_hist
    plot_vel = cfg.ati.plot_vel

    ## CALCULATE PARAMETERS
    if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True)
    k0 = 2. * np.pi * f0 / const.c
    rg_sampling = rg_bw * over_fs

    # PROCESSED RAW DATA
    proc_content = tpio.ProcFile(proc_output_file, 'r')
    proc_data = proc_content.get('slc*')
    proc_content.close()

    # OCEAN SURFACE
    surface = OceanSurface()
    surface.load(ocean_file, compute=['D', 'V'])
    surface.t = 0.

    # OUTPUT FILE
    output = open(output_file, 'w')

    # OTHER INITIALIZATIONS
    # Enable TeX
    if plot_tex:
        plt.rc('font', family='serif')
        plt.rc('text', usetex=True)

    # Create plots directory
    plot_path = os.path.dirname(output_file) + os.sep + plot_path
    if plot_save:
        if not os.path.exists(plot_path):
            os.makedirs(plot_path)

    # SURFACE VELOCITIES
    grg_grid_spacing = (const.c / 2. / rg_sampling / np.sin(inc_angle))
    rg_res_fact = grg_grid_spacing / surface.dx
    az_grid_spacing = (v_ground / prf)
    az_res_fact = az_grid_spacing / surface.dy
    res_fact = np.ceil(np.sqrt(rg_res_fact * az_res_fact))

    # SURFACE RADIAL VELOCITY
    v_radial_surf = surface.Vx * np.sin(inc_angle) - surface.Vz * np.cos(
        inc_angle)
    v_radial_surf_ml = utils.smooth(v_radial_surf, res_fact * multilooking)
    v_radial_surf_mean = np.mean(v_radial_surf)
    v_radial_surf_std = np.std(v_radial_surf)
    v_radial_surf_ml_std = np.std(v_radial_surf_ml)

    # SURFACE HORIZONTAL VELOCITY
    v_horizo_surf = surface.Vx
    v_horizo_surf_ml = utils.smooth(v_horizo_surf, res_fact * multilooking)
    v_horizo_surf_mean = np.mean(v_horizo_surf)
    v_horizo_surf_std = np.std(v_horizo_surf)
    v_horizo_surf_ml_std = np.std(v_horizo_surf_ml)

    # Expected mean azimuth shift
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    avg_az_shift = -v_radial_surf_mean / v_ground * sr0
    std_az_shift = v_radial_surf_std / v_ground * sr0
    ##################
    # ATI PROCESSING #
    ##################

    print('Starting ATI processing...')

    # Get dimensions & calculate region of interest
    rg_span = surface.Lx
    az_span = surface.Ly
    rg_size = proc_data[0].shape[2]
    az_size = proc_data[0].shape[1]

    # Note: RG is projected, so plots are Ground Range
    rg_min = 0
    rg_max = np.int(rg_span / (const.c / 2. / rg_sampling / np.sin(inc_angle)))
    az_min = np.int(az_size / 2. + (-az_span / 2. + avg_az_shift) /
                    (v_ground / prf))
    az_max = np.int(az_size / 2. + (az_span / 2. + avg_az_shift) /
                    (v_ground / prf))
    az_guard = np.int(std_az_shift / (v_ground / prf))
    if (az_max - az_min) < (2 * az_guard - 10):
        print('Not enough edge-effect free image')
        return

    # Adaptive coregistration
    if cfg.sar.L_total:
        ant_L = ant_L / np.float(num_ch)
        dist_chan = ant_L / 2
    else:
        if np.float(cfg.sar.Spacing) != 0:
            dist_chan = np.float(cfg.sar.Spacing) / 2
        else:
            dist_chan = ant_L / 2
    # dist_chan = ant_L/num_ch/2.
    print(('ATI Spacing: %f' % dist_chan))
    inter_chan_shift_dist = dist_chan / (v_ground / prf)
    # Subsample shift in azimuth
    for chind in range(proc_data.shape[0]):
        shift_dist = -chind * inter_chan_shift_dist
        shift_arr = np.exp(
            -2j * np.pi * shift_dist *
            np.roll(np.arange(az_size) - az_size / 2, int(-az_size / 2)) /
            az_size)
        shift_arr = shift_arr.reshape((1, az_size, 1))
        proc_data[chind] = np.fft.ifft(np.fft.fft(proc_data[chind], axis=1) *
                                       shift_arr,
                                       axis=1)

    # First dimension is number of channels, second is number of pols
    ch_dim = proc_data.shape[0:2]
    npol = ch_dim[1]
    proc_data_rshp = [np.prod(ch_dim), proc_data.shape[2], proc_data.shape[3]]
    # Compute extended covariance matrices...
    proc_data = proc_data.reshape(proc_data_rshp)
    # Intensities
    i_all = []
    for chind in range(proc_data.shape[0]):
        this_i = utils.smooth(np.abs(proc_data[chind])**2., multilooking)
        i_all.append(this_i[az_min:az_max, rg_min:rg_max])
    i_all = np.array(i_all)
    # .reshape((ch_dim) + (az_max - az_min, rg_max - rg_min))
    interfs = []
    cohs = []
    tind = 0
    coh_lut = np.zeros((proc_data.shape[0], proc_data.shape[0]), dtype=int)
    for chind1 in range(proc_data.shape[0]):
        for chind2 in range(chind1 + 1, proc_data.shape[0]):
            coh_lut[chind1, chind2] = tind
            tind = tind + 1
            t_interf = utils.smooth(
                proc_data[chind2] * np.conj(proc_data[chind1]), multilooking)
            interfs.append(t_interf[az_min:az_max, rg_min:rg_max])
            cohs.append(t_interf[az_min:az_max, rg_min:rg_max] /
                        np.sqrt(i_all[chind1] * i_all[chind2]))

    print('Generating plots and estimating values...')

    # SURFACE HEIGHT
    if plot_surface:
        plt.figure()
        plt.imshow(surface.Dz,
                   cmap="ocean",
                   extent=[0, surface.Lx, 0, surface.Ly],
                   origin='lower')
        plt.title('Surface Height')
        plt.xlabel('Ground range [m]')
        plt.ylabel('Azimuth [m]')
        cbar = plt.colorbar()
        cbar.ax.set_xlabel('[m]')

        if plot_save:
            plt.savefig(plot_path + os.sep + 'plot_surface.' + plot_format,
                        bbox_inches='tight')
            plt.close()
        else:
            plt.show()

    # PROCESSED AMPLITUDE
    if plot_proc_ampl:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind] + '.' +
                         plot_format)
            plt.figure()
            plt.imshow(utils.db(i_all[pind]),
                       aspect='equal',
                       origin='lower',
                       vmin=utils.db(np.max(i_all[pind])) - 20,
                       extent=[0., rg_span, 0., az_span])
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'amp_' + polt[pind] + '.' +
                         plot_format)
            int_img = (i_all[pind])**0.5
            vmin = np.mean(int_img) - 3 * np.std(int_img)
            vmax = np.mean(int_img) + 3 * np.std(int_img)
            plt.figure()
            plt.imshow(int_img,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span])
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

    if plot_coh:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'ATI_coh_' + polt[pind] +
                         polt[pind] + '.' + plot_format)
            coh_ind = coh_lut[(pind, pind + npol)]
            plt.figure()
            plt.imshow(np.abs(cohs[coh_ind]),
                       aspect='equal',
                       origin='lower',
                       vmin=0,
                       vmax=1,
                       extent=[0., rg_span, 0., az_span],
                       cmap='bone')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("ATI Coherence")
            # plt.colorbar()
            plt.savefig(save_path)

    # ATI PHASE

    tau_ati = dist_chan / v_ground

    ati_phases = []

    for pind in range(npol):
        save_path = (plot_path + os.sep + 'ATI_pha_' + polt[pind] +
                     polt[pind] + '.' + plot_format)
        coh_ind = coh_lut[(pind, pind + npol)]
        ati_phase = uwphase(cohs[coh_ind])
        ati_phases.append(ati_phase)
        v_radial_est = -ati_phase / tau_ati / (k0 * 2.)
        if plot_ati_phase:
            phase_mean = np.mean(ati_phase)
            phase_std = np.std(ati_phase)
            vmin = np.max([
                -np.abs(phase_mean) - 4 * phase_std, -np.abs(ati_phase).max()
            ])
            vmax = np.min(
                [np.abs(phase_mean) + 4 * phase_std,
                 np.abs(ati_phase).max()])
            plt.figure()
            plt.imshow(ati_phase,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       cmap='hsv')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("ATI Phase")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'ATI_rvel_' + polt[pind] +
                         polt[pind] + '.' + plot_format)
            vmin = -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std
            vmax = np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
            plt.figure()
            plt.imshow(v_radial_est,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       cmap='bwr')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Estimated Radial Velocity " + polt[pind])
            plt.colorbar()
            plt.savefig(save_path)

    if npol == 4:  # Bypass this for now
        # Cross pol interferogram
        coh_ind = coh_lut[(0, 1)]
        save_path = (plot_path + os.sep + 'POL_coh_' + polt[0] + polt[1] +
                     '.' + plot_format)
        utils.image(np.abs(cohs[coh_ind]),
                    max=1,
                    min=0,
                    aspect='equal',
                    cmap='gray',
                    extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]',
                    ylabel='Azimuth [m]',
                    title='XPOL Coherence',
                    usetex=plot_tex,
                    save=plot_save,
                    save_path=save_path)
        save_path = (plot_path + os.sep + 'POL_pha_' + polt[0] + polt[1] +
                     '.' + plot_format)
        ati_phase = uwphase(cohs[coh_ind])
        phase_mean = np.mean(ati_phase)
        phase_std = np.std(ati_phase)
        vmin = np.max([-np.abs(phase_mean) - 4 * phase_std, -np.pi])
        vmax = np.min([np.abs(phase_mean) + 4 * phase_std, np.pi])
        utils.image(ati_phase,
                    aspect='equal',
                    min=vmin,
                    max=vmax,
                    cmap=utils.bwr_cmap,
                    extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]',
                    ylabel='Azimuth [m]',
                    title='XPOL Phase',
                    cbar_xlabel='[rad]',
                    usetex=plot_tex,
                    save=plot_save,
                    save_path=save_path)

    ati_phases = np.array(ati_phases)

    output.write('--------------------------------------------\n')
    output.write('SURFACE RADIAL VELOCITY - NO SMOOTHING\n')
    output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean)
    output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_std)
    output.write('--------------------------------------------\n\n')

    output.write('--------------------------------------------\n')
    output.write('SURFACE RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%d)\n' %
                 multilooking)
    output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean)
    output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_ml_std)
    output.write('--------------------------------------------\n\n')

    output.write('--------------------------------------------\n')
    output.write('SURFACE HORIZONTAL VELOCITY - NO SMOOTHING\n')
    output.write('MEAN(SURF. V) = %.4f\n' % v_horizo_surf_mean)
    output.write('STD(SURF. V) = %.4f\n' % v_horizo_surf_std)
    output.write('--------------------------------------------\n\n')

    if plot_vel_hist:
        # PLOT RADIAL VELOCITY
        plt.figure()

        plt.hist(v_radial_surf.flatten(), 200, normed=True, histtype='step')
        #plt.hist(v_radial_surf_ml.flatten(), 500, normed=True, histtype='step')
        plt.grid(True)
        plt.xlim([
            -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
            np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
        ])
        plt.xlabel('Radial velocity [m/s]')
        plt.ylabel('PDF')
        plt.title('Surface velocity')

        if plot_save:
            plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_hist.' +
                        plot_format)
            plt.close()
        else:
            plt.show()

        plt.figure()
        plt.hist(v_radial_surf_ml.flatten(), 200, normed=True, histtype='step')
        #plt.hist(v_radial_surf_ml.flatten(), 500, normed=True, histtype='step')
        plt.grid(True)
        plt.xlim([
            -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
            np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
        ])
        plt.xlabel('Radial velocity [m/s]')
        plt.ylabel('PDF')
        plt.title('Surface velocity (low pass filtered)')

        if plot_save:
            plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_ml_hist.' +
                        plot_format)
            plt.close()
        else:
            plt.show()

    if plot_vel:

        utils.image(v_radial_surf,
                    aspect='equal',
                    cmap=utils.bwr_cmap,
                    extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]',
                    ylabel='Azimuth [m]',
                    title='Surface Radial Velocity',
                    cbar_xlabel='[m/s]',
                    min=-np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
                    max=np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std,
                    usetex=plot_tex,
                    save=plot_save,
                    save_path=plot_path + os.sep + 'TRUE_radial_vel.' +
                    plot_format)
        utils.image(v_radial_surf_ml,
                    aspect='equal',
                    cmap=utils.bwr_cmap,
                    extent=[0., rg_span, 0., az_span],
                    xlabel='Ground range [m]',
                    ylabel='Azimuth [m]',
                    title='Surface Radial Velocity',
                    cbar_xlabel='[m/s]',
                    min=-np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
                    max=np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std,
                    usetex=plot_tex,
                    save=plot_save,
                    save_path=plot_path + os.sep + 'TRUE_radial_vel_ml.' +
                    plot_format)

    ##  ESTIMATED VELOCITIES

    # Note: plot limits are taken from surface calculations to keep the same ranges

    # ESTIMATE RADIAL VELOCITY
    v_radial_ests = -ati_phases / tau_ati / (k0 * 2.)

    # ESTIMATE HORIZONTAL VELOCITY
    v_horizo_ests = -ati_phases / tau_ati / (k0 * 2.) / np.sin(inc_angle)

    #Trim edges
    v_radial_ests = v_radial_ests[:, az_guard:-az_guard, 5:-5]
    v_horizo_ests = v_horizo_ests[:, az_guard:-az_guard, 5:-5]
    output.write('--------------------------------------------\n')
    output.write('ESTIMATED RADIAL VELOCITY - NO SMOOTHING\n')
    for pind in range(npol):
        output.write("%s Polarization\n" % polt[pind])
        output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_radial_ests[pind]))
        output.write('STD(EST. V) = %.4f\n' % np.std(v_radial_ests[pind]))
    output.write('--------------------------------------------\n\n')

    output.write('--------------------------------------------\n')
    output.write('ESTIMATED RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%d)\n' %
                 multilooking)
    for pind in range(npol):
        output.write("%s Polarization\n" % polt[pind])
        output.write('MEAN(EST. V) = %.4f\n' %
                     np.mean(utils.smooth(v_radial_ests[pind], multilooking)))
        output.write('STD(EST. V) = %.4f\n' %
                     np.std(utils.smooth(v_radial_ests[pind], multilooking)))
    output.write('--------------------------------------------\n\n')

    output.write('--------------------------------------------\n')
    output.write('ESTIMATED HORIZONTAL VELOCITY - NO SMOOTHING\n')
    for pind in range(npol):
        output.write("%s Polarization\n" % polt[pind])
        output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_horizo_ests[pind]))
        output.write('STD(EST. V) = %.4f\n' % np.std(v_horizo_ests[pind]))
    output.write('--------------------------------------------\n\n')

    #Processed NRCS
    NRCS_est_avg = 10 * np.log10(
        np.mean(np.mean(i_all[:, az_guard:-az_guard, 5:-5], axis=-1), axis=-1))
    output.write('--------------------------------------------\n')
    for pind in range(npol):
        output.write("%s Polarization\n" % polt[pind])
        output.write('Estimated mean NRCS = %5.2f\n' % NRCS_est_avg[pind])
    output.write('--------------------------------------------\n\n')

    # Some bookkeeping information
    output.write('--------------------------------------------\n')
    output.write('GROUND RANGE GRID SPACING = %.4f\n' % grg_grid_spacing)
    output.write('AZIMUTH GRID SPACING = %.4f\n' % az_grid_spacing)
    output.write('--------------------------------------------\n\n')

    output.close()

    if plot_vel_hist:
        # PLOT RADIAL VELOCITY
        plt.figure()
        plt.hist(v_radial_surf.flatten(),
                 200,
                 normed=True,
                 histtype='step',
                 label='True')
        for pind in range(npol):
            plt.hist(v_radial_ests[pind].flatten(),
                     200,
                     normed=True,
                     histtype='step',
                     label=polt[pind])
        plt.grid(True)
        plt.xlim([
            -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std,
            np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std
        ])
        plt.xlabel('Radial velocity [m/s]')
        plt.ylabel('PDF')
        plt.title('Estimated velocity')
        plt.legend()

        if plot_save:
            plt.savefig(plot_path + os.sep + 'ATI_radial_vel_hist.' +
                        plot_format)
            plt.close()
        else:
            plt.show()

    print('----------------------------------------')
    print((time.strftime("ATI Processing finished [%Y-%m-%d %H:%M:%S]",
                         time.localtime())))
    print('----------------------------------------')
Example #10
0
def surface_S(cfg_file=None, inc_deg=None, ntimes=2, t_step=10e-3):
    """ This function generates a (short) time series of surface realizations.

        :param scf_file: the full path to the configuration with all OCEANSAR parameters
        :param inc_deg: the incident angle, in degree
        :param ntimes: number of time samples generated.
        :param t_step: spacing between time samples. This can be interpreted as the Pulse Repetition Interval

        :returns: a tuple with the configuration object, the surfaces, the radial velocities for each grid point,
                  and the complex scattering coefficients
    """

    cfg_file = utils.get_parFile(parfile=cfg_file)
    cfg = io.ConfigFile(cfg_file)
    use_hmtf = cfg.srg.use_hmtf
    scat_spec_enable = cfg.srg.scat_spec_enable
    scat_spec_mode = cfg.srg.scat_spec_mode
    scat_bragg_enable = cfg.srg.scat_bragg_enable
    scat_bragg_model = cfg.srg.scat_bragg_model
    scat_bragg_d = cfg.srg.scat_bragg_d
    scat_bragg_spec = cfg.srg.scat_bragg_spec
    scat_bragg_spread = cfg.srg.scat_bragg_spread

    # SAR
    inc_angle = np.deg2rad(cfg.sar.inc_angle)
    alt = cfg.sar.alt
    f0 = cfg.sar.f0
    prf = cfg.sar.prf
    pol = cfg.sar.pol
    l0 = const.c / f0
    k0 = 2. * np.pi * f0 / const.c
    if pol == 'DP':
        do_hh = True
        do_vv = True
    elif pol == 'hh':
        do_hh = True
        do_vv = False
    else:
        do_hh = False
        do_vv = True
    # OCEAN / OTHERS
    ocean_dt = cfg.ocean.dt
    surface = OceanSurface()
    compute = ['D', 'Diff', 'Diff2', 'V']
    if use_hmtf:
        compute.append('hMTF')
    surface.init(cfg.ocean.Lx,
                 cfg.ocean.Ly,
                 cfg.ocean.dx,
                 cfg.ocean.dy,
                 cfg.ocean.cutoff_wl,
                 cfg.ocean.spec_model,
                 cfg.ocean.spread_model,
                 np.deg2rad(cfg.ocean.wind_dir),
                 cfg.ocean.wind_fetch,
                 cfg.ocean.wind_U,
                 cfg.ocean.current_mag,
                 np.deg2rad(cfg.ocean.current_dir),
                 cfg.ocean.swell_enable,
                 cfg.ocean.swell_ampl,
                 np.deg2rad(cfg.ocean.swell_dir),
                 cfg.ocean.swell_wl,
                 compute,
                 cfg.ocean.opt_res,
                 cfg.ocean.fft_max_prime,
                 choppy_enable=cfg.ocean.choppy_enable)
    # Get a surface realization calculated
    surface.t = 0
    if inc_deg is None:
        inc_deg = cfg.sar.inc_angle

    inc_angle = np.radians(inc_deg)
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    gr0 = geosar.inc_to_gr(inc_angle, alt)
    gr = surface.x + gr0
    sr, inc, _ = geosar.gr_to_geo(gr, alt)
    sr -= np.min(sr)
    inc = inc.reshape(1, inc.size)
    sr = sr.reshape(1, sr.size)
    gr = gr.reshape(1, gr.size)
    sin_inc = np.sin(inc)
    cos_inc = np.cos(inc)

    t_last_rcs_bragg = -1.
    last_progress = -1
    NRCS_avg_vv = np.zeros(ntimes, dtype=np.float)
    NRCS_avg_hh = np.zeros(ntimes, dtype=np.float)
    # RCS MODELS
    # Specular
    if scat_spec_enable:
        if scat_spec_mode == 'kodis':
            rcs_spec = rcs.RCSKodis(inc, k0, surface.dx, surface.dy)
        elif scat_spec_mode == 'fa' or scat_spec_mode == 'spa':
            spec_ph0 = np.random.uniform(0.,
                                         2. * np.pi,
                                         size=[surface.Ny, surface.Nx])
            rcs_spec = rcs.RCSKA(scat_spec_mode, k0, surface.x, surface.y,
                                 surface.dx, surface.dy)
        else:
            raise NotImplementedError(
                'RCS mode %s for specular scattering not implemented' %
                scat_spec_mode)

    # Bragg
    if scat_bragg_enable:
        phase_bragg = np.zeros([2, surface.Ny, surface.Nx])
        bragg_scats = np.zeros([2, surface.Ny, surface.Nx], dtype=np.complex)
        tau_c = closure.grid_coherence(cfg.ocean.wind_U, surface.dx, f0)
        rndscat_p = closure.randomscat_ts(tau_c, (surface.Ny, surface.Nx), prf)
        rndscat_m = closure.randomscat_ts(tau_c, (surface.Ny, surface.Nx), prf)
        # NOTE: This ignores slope, may be changed
        k_b = 2. * k0 * sin_inc
        c_b = sin_inc * np.sqrt(const.g / k_b + 0.072e-3 * k_b)

        if scat_bragg_model == 'romeiser97':
            current_dir = np.deg2rad(cfg.ocean.current_dir)
            current_vec = (cfg.ocean.current_mag * np.array(
                [np.cos(current_dir), np.sin(current_dir)]))
            U_dir = np.deg2rad(cfg.ocean.wind_dir)
            U_vec = (cfg.ocean.wind_U *
                     np.array([np.cos(U_dir), np.sin(U_dir)]))
            U_eff_vec = U_vec - current_vec

            rcs_bragg = rcs.RCSRomeiser97(
                k0, inc, pol, surface.dx, surface.dy, linalg.norm(U_eff_vec),
                np.arctan2(U_eff_vec[1], U_eff_vec[0]), surface.wind_fetch,
                scat_bragg_spec, scat_bragg_spread, scat_bragg_d)
        else:
            raise NotImplementedError(
                'RCS model %s for Bragg scattering not implemented' %
                scat_bragg_model)

    surface_area = surface.dx * surface.dy * surface.Nx * surface.Ny
    if do_hh:
        scene_hh = np.zeros([ntimes, surface.Ny, surface.Nx], dtype=np.complex)
    if do_vv:
        scene_vv = np.zeros([ntimes, surface.Ny, surface.Nx], dtype=np.complex)

    for az_step in range(ntimes):

        # AZIMUTH & SURFACE UPDATE
        t_now = az_step * t_step
        # az_now = (t_now - t_span/2.)*v_ground
        az_now = 0
        # az = np.repeat((surface.y - az_now)[:, np.newaxis], surface.Nx, axis=1)
        az = (surface.y - az_now).reshape((surface.Ny, 1))
        surface.t = t_now

        ## COMPUTE RCS FOR EACH MODEL
        # Note: SAR processing is range independent as slant range is fixed
        sin_az = az / sr0
        az_proj_angle = np.arcsin(az / gr0)

        # Note: Projected displacements are added to slant range
        sr_surface = (sr - cos_inc * surface.Dz + az / 2 * sin_az +
                      surface.Dx * sin_inc + surface.Dy * sin_az)

        # Specular
        if scat_spec_enable:
            if scat_spec_mode == 'kodis':
                Esn_sp = np.sqrt(4. * np.pi) * rcs_spec.field(
                    az_proj_angle, sr_surface, surface.Diffx, surface.Diffy,
                    surface.Diffxx, surface.Diffyy, surface.Diffxy)
                if do_hh:
                    scene_hh[az_step] += Esn_sp
                if do_vv:
                    scene_vv[az_step] += Esn_sp
            else:
                # FIXME
                if do_hh:
                    pol_tmp = 'hh'
                    Esn_sp = (
                        np.exp(-1j * (2. * k0 * sr_surface)) *
                        (4. * np.pi)**1.5 * rcs_spec.field(
                            1, 1, pol_tmp[0], pol_tmp[1], inc, inc,
                            az_proj_angle, az_proj_angle + np.pi, surface.Dz,
                            surface.Diffx, surface.Diffy, surface.Diffxx,
                            surface.Diffyy, surface.Diffxy))
                    scene_hh[az_step] += Esn_sp
                if do_vv:
                    pol_tmp = 'vv'
                    Esn_sp = (
                        np.exp(-1j * (2. * k0 * sr_surface)) *
                        (4. * np.pi)**1.5 * rcs_spec.field(
                            1, 1, pol_tmp[0], pol_tmp[1], inc, inc,
                            az_proj_angle, az_proj_angle + np.pi, surface.Dz,
                            surface.Diffx, surface.Diffy, surface.Diffxx,
                            surface.Diffyy, surface.Diffxy))
                    scene_vv[az_step] += Esn_sp
            NRCS_avg_hh[az_step] += (np.sum(np.abs(Esn_sp)**2) / surface_area)
            NRCS_avg_vv[az_step] += NRCS_avg_hh[az_step]

        # Bragg
        if scat_bragg_enable:
            if (t_now - t_last_rcs_bragg) > ocean_dt:

                if scat_bragg_model == 'romeiser97':
                    if pol == 'DP':
                        RCS_bragg_hh, RCS_bragg_vv = rcs_bragg.rcs(
                            az_proj_angle, surface.Diffx, surface.Diffy)
                    elif pol == 'hh':
                        RCS_bragg_hh = rcs_bragg.rcs(az_proj_angle,
                                                     surface.Diffx,
                                                     surface.Diffy)
                    else:
                        RCS_bragg_vv = rcs_bragg.rcs(az_proj_angle,
                                                     surface.Diffx,
                                                     surface.Diffy)

                if use_hmtf:
                    # Fix Bad MTF points
                    surface.hMTF[np.where(surface.hMTF < -1)] = -1
                    if do_hh:
                        RCS_bragg_hh[0] *= (1 + surface.hMTF)
                        RCS_bragg_hh[1] *= (1 + surface.hMTF)
                    if do_vv:
                        RCS_bragg_vv[0] *= (1 + surface.hMTF)
                        RCS_bragg_vv[1] *= (1 + surface.hMTF)

                t_last_rcs_bragg = t_now

            if do_hh:
                scat_bragg_hh = np.sqrt(RCS_bragg_hh)
                NRCS_bragg_hh_instant_avg = np.sum(RCS_bragg_hh) / surface_area
                NRCS_avg_hh[az_step] += NRCS_bragg_hh_instant_avg
            if do_vv:
                scat_bragg_vv = np.sqrt(RCS_bragg_vv)
                NRCS_bragg_vv_instant_avg = np.sum(RCS_bragg_vv) / surface_area
                NRCS_avg_vv[az_step] += NRCS_bragg_vv_instant_avg

            # Doppler phases (Note: Bragg radial velocity taken constant!)
            surf_phase = -(2 * k0) * sr_surface
            cap_phase = (2 * k0) * t_step * c_b * (az_step + 1)
            phase_bragg[0] = surf_phase - cap_phase  # + dop_phase_p
            phase_bragg[1] = surf_phase + cap_phase  # + dop_phase_m
            bragg_scats[0] = rndscat_m.scats(t_now)
            bragg_scats[1] = rndscat_p.scats(t_now)
            if do_hh:
                scene_hh[az_step] += ne.evaluate(
                    'sum(scat_bragg_hh * exp(1j*phase_bragg) * bragg_scats, axis=0)'
                )
            if do_vv:
                scene_vv[az_step] += ne.evaluate(
                    'sum(scat_bragg_vv * exp(1j*phase_bragg) * bragg_scats, axis=0)'
                )

    v_r = (surface.Vx * np.sin(inc) - surface.Vz * np.cos(inc))
    if do_hh and do_vv:
        return (cfg, surface.Dz, v_r, scene_hh, scene_vv)
    elif do_hh:
        return (cfg, surface.Dz, v_r, scene_hh)
    else:
        return (cfg, surface.Dz, v_r, scene_vv)
def postprocess_batch_sim(template_file, plots=True):
    cfg_file = utils.get_parFile(parfile=template_file)
    ref_cfg = osrio.ConfigFile(cfg_file)
#wave_scale = [100, 37.5, 25, 12.5]
<<<<<<< HEAD
>>>>>>> parent of 60eb239... Delete oceansar_batchsarsim_skim.py
=======
>>>>>>> parent of 60eb239... Delete oceansar_batchsarsim_skim.py

n_rep = 1
cfg_file_name = 'config.cfg'

def batch_skimsim(template_file):
<<<<<<< HEAD
<<<<<<< HEAD
    
    for iii in range(np.size(No)):
        cfg_file = utils.get_parFile(parfile=template_file)
        ref_cfg = osrio.ConfigFile(cfg_file)
        path_m = ref_cfg.sim.path + os.sep + 'SKIM_12deg_rar_%d'%(No[iii])
        sim_path_ref = path_m + os.sep + 'Time%d_inc_s%d_azimuth_s%d'
               
        for t in Time:
            for inc_angle in inc_s:
                for azimuth in azimuth_s:
                   
                    ### CONFIGURATION FILE ###
                    # Load template
                    cfg = ref_cfg
        
                    # Modify template, create directory & save
                    cfg.sim.path = sim_path_ref % (t, inc_angle, azimuth)
                    cfg.batch_Loop.t = t
                    cfg.radar.inc_angle = inc_angle
Example #13
0
    def __init__(self, cfg_file=None, ntimes=2, t_step=10e-3, pol='DP', winddir=0, U10=None):
        """ This function generates a (short) time series of surface realizations.

                :param scf_file: the full path to the configuration with all OCEANSAR parameters
                :param ntimes: number of time samples generated.
                :param t_step: spacing between time samples. This can be interpreted as the Pulse Repetition Interval
                :param winddir: to force wind direction
                :param U10: to force wind force

                :returns: a tuple with the configuration object, the surfaces, the radial velocities for each grid point,
                      and the complex scattering coefficients
        """
        cfg_file = utils.get_parFile(parfile=cfg_file)
        cfg = io.ConfigFile(cfg_file)
        self.cfg = cfg
        self.use_hmtf = cfg.srg.use_hmtf
        self.scat_spec_enable = cfg.srg.scat_spec_enable
        self.scat_spec_mode = cfg.srg.scat_spec_mode
        self.scat_bragg_enable = cfg.srg.scat_bragg_enable
        self.scat_bragg_model = cfg.srg.scat_bragg_model
        self.scat_bragg_d = cfg.srg.scat_bragg_d
        self.scat_bragg_spec = cfg.srg.scat_bragg_spec
        self.scat_bragg_spread = cfg.srg.scat_bragg_spread

        # SAR
        self.inc_angle = np.deg2rad(cfg.sar.inc_angle)
        self.alt = self.cfg.sar.alt
        self.f0 = self.cfg.sar.f0
        self.prf = cfg.sar.prf
        if pol is None:
            self.pol = cfg.sar.pol
        else:
            self.pol = pol

        l0 = const.c / self.f0
        k0 = 2. * np.pi * self.f0 / const.c
        if self.pol == 'DP':
            self.do_hh = True
            self.do_vv = True
        elif self.pol == 'hh':
            self.do_hh = True
            self.do_vv = False
        else:
            self.do_hh = False
            self.do_vv = True
        # OCEAN / OTHERS
        ocean_dt = cfg.ocean.dt
        self.surface = OceanSurface()
        compute = ['D', 'Diff', 'Diff2', 'V']
        print("Initializating surface")
        if winddir is not None:
            self.wind_dir = np.radians(winddir)
        else:
            self.wind_dir = np.deg2rad(cfg.ocean.wind_dir)
        if U10 is None:
            self.wind_u = cfg.ocean.wind_U
        else:
            self.wind_u = U10
        if self.use_hmtf:
            compute.append('hMTF')
            self.surface.init(cfg.ocean.Lx, cfg.ocean.Ly, cfg.ocean.dx,
                              cfg.ocean.dy, cfg.ocean.cutoff_wl,
                              cfg.ocean.spec_model, cfg.ocean.spread_model,
                              self.wind_dir,
                              cfg.ocean.wind_fetch, self.wind_u,
                              cfg.ocean.current_mag,
                              np.deg2rad(cfg.ocean.current_dir),
                              cfg.ocean.swell_enable, cfg.ocean.swell_ampl,
                              np.deg2rad(cfg.ocean.swell_dir),
                              cfg.ocean.swell_wl,
                              compute, cfg.ocean.opt_res,
                              cfg.ocean.fft_max_prime,
                              choppy_enable=cfg.ocean.choppy_enable)
        # Get a surface realization calculated
        print("Computing surface realizations")
        self.surface.t = 0
        self.ntimes = ntimes
        self.diffx = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.diffy = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.diffxx = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.diffxy = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.diffyy = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.dx = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.dy = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.dz = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
        self.diffx[0, :, :] = self.surface.Diffx
        self.diffy[0, :, :] = self.surface.Diffy
        self.diffxx[0, :, :] = self.surface.Diffxx
        self.diffyy[0, :, :] = self.surface.Diffyy
        self.diffxy[0, :, :] = self.surface.Diffxy
        self.dx[0, :, :] = self.surface.Dx
        self.dy[0, :, :] = self.surface.Dy
        self.dz[0, :, :] = self.surface.Dz
        if self.use_hmtf:
            self.h_mtf = np.zeros((ntimes, self.surface.Ny, self.surface.Nx))
            self.h_mtf[0, :, :] = self.surface.hMTF
        self.t_step = t_step
        for az_step in range(1, ntimes):
            t_now = az_step * t_step
            self.surface.t = t_now
            self.diffx[az_step, :, :] = self.surface.Diffx
            self.diffy[az_step, :, :] = self.surface.Diffy
            self.diffxx[az_step, :, :] = self.surface.Diffxx
            self.diffyy[az_step, :, :] = self.surface.Diffyy
            self.diffxy[az_step, :, :] = self.surface.Diffxy
            self.dx[az_step, :, :] = self.surface.Dx
            self.dy[az_step, :, :] = self.surface.Dy
            self.dz[az_step, :, :] = self.surface.Dz
            if self.use_hmtf:
                self.h_mtf[az_step, :, :] = self.surface.hMTF
        self.inc_is_set = False
Example #14
0
def sar_focus(cfg_file, raw_output_file, output_file):

    ###################
    # INITIALIZATIONS #
    ###################

    print(
        '-------------------------------------------------------------------')
    print(
        time.strftime("- OCEANSAR SAR Processor: %Y-%m-%d %H:%M:%S",
                      time.localtime()))
    print(
        '-------------------------------------------------------------------')

    ## CONFIGURATION FILE
    cfg = tpio.ConfigFile(cfg_file)

    # PROCESSING
    az_weighting = cfg.processing.az_weighting
    doppler_bw = cfg.processing.doppler_bw
    plot_format = cfg.processing.plot_format
    plot_tex = cfg.processing.plot_tex
    plot_save = cfg.processing.plot_save
    plot_path = cfg.processing.plot_path
    plot_raw = cfg.processing.plot_raw
    plot_rcmc_dopp = cfg.processing.plot_rcmc_dopp
    plot_rcmc_time = cfg.processing.plot_rcmc_time
    plot_image_valid = cfg.processing.plot_image_valid

    # SAR
    f0 = cfg.sar.f0
    prf = cfg.sar.prf
    num_ch = cfg.sar.num_ch
    alt = cfg.sar.alt
    v_ground = cfg.sar.v_ground
    rg_bw = cfg.sar.rg_bw
    over_fs = cfg.sar.over_fs

    ## CALCULATE PARAMETERS
    l0 = const.c / f0
    if v_ground == 'auto': v_ground = geo.orbit_to_vel(alt, ground=True)
    rg_sampling = rg_bw * over_fs

    ## RAW DATA
    raw_file = tpio.RawFile(raw_output_file, 'r')
    raw_data = raw_file.get('raw_data*')
    sr0 = raw_file.get('sr0')
    raw_file.close()

    ## OTHER INITIALIZATIONS
    # Create plots directory
    plot_path = os.path.dirname(output_file) + os.sep + plot_path
    if plot_save:
        if not os.path.exists(plot_path):
            os.makedirs(plot_path)

    slc = []

    ########################
    # PROCESSING MAIN LOOP #
    ########################
    for ch in np.arange(num_ch):

        if plot_raw:
            utils.image(np.real(raw_data[0, ch]),
                        min=-np.max(np.abs(raw_data[0, ch])),
                        max=np.max(np.abs(raw_data[0, ch])),
                        cmap='gray',
                        aspect=np.float(raw_data[0, ch].shape[1]) /
                        np.float(raw_data[0, ch].shape[0]),
                        title='Raw Data',
                        xlabel='Range samples',
                        ylabel='Azimuth samples',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep + 'plot_raw_real_%d.%s' %
                        (ch, plot_format),
                        dpi=150)
            utils.image(np.imag(raw_data[0, ch]),
                        min=-np.max(np.abs(raw_data[0, ch])),
                        max=np.max(np.abs(raw_data[0, ch])),
                        cmap='gray',
                        aspect=np.float(raw_data[0, ch].shape[1]) /
                        np.float(raw_data[0, ch].shape[0]),
                        title='Raw Data',
                        xlabel='Range samples',
                        ylabel='Azimuth samples',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep + 'plot_raw_imag_%d.%s' %
                        (ch, plot_format),
                        dpi=150)
            utils.image(np.abs(raw_data[0, ch]),
                        min=0,
                        max=np.max(np.abs(raw_data[0, ch])),
                        cmap='gray',
                        aspect=np.float(raw_data[0, ch].shape[1]) /
                        np.float(raw_data[0, ch].shape[0]),
                        title='Raw Data',
                        xlabel='Range samples',
                        ylabel='Azimuth samples',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep + 'plot_raw_amp_%d.%s' %
                        (ch, plot_format),
                        dpi=150)
            utils.image(np.angle(raw_data[0, ch]),
                        min=-np.pi,
                        max=np.pi,
                        cmap='gray',
                        aspect=np.float(raw_data[0, ch].shape[1]) /
                        np.float(raw_data[0, ch].shape[0]),
                        title='Raw Data',
                        xlabel='Range samples',
                        ylabel='Azimuth samples',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep + 'plot_raw_phase_%d.%s' %
                        (ch, plot_format),
                        dpi=150)

        # Optimize matrix sizes
        az_size_orig, rg_size_orig = raw_data[0, ch].shape
        optsize = utils.optimize_fftsize(raw_data[0, ch].shape)
        optsize = [raw_data.shape[0], optsize[0], optsize[1]]
        data = np.zeros(optsize, dtype=complex)
        data[:, :raw_data[0, ch].shape[0], :raw_data[
            0, ch].shape[1]] = raw_data[:, ch, :, :]

        az_size, rg_size = data.shape[1:]

        # RCMC Correction
        print('Applying RCMC correction... [Channel %d/%d]' % (ch + 1, num_ch))

        #fr = np.linspace(-rg_sampling/2., rg_sampling/2., rg_size)
        fr = (np.arange(rg_size) - rg_size / 2) * rg_sampling / rg_size
        fr = np.roll(fr, int(-rg_size / 2))

        fa = (np.arange(az_size) - az_size / 2) * prf / az_size
        fa = np.roll(fa, int(-az_size / 2))

        #fa[az_size/2:] = fa[az_size/2:] - prf
        rcmc_fa = sr0 / np.sqrt(1 - (fa * (l0 / 2.) / v_ground)**2.) - sr0

        data = np.fft.fft2(data)

        #        for i in np.arange(az_size):
        #            data[i,:] *= np.exp(1j*2*np.pi*2*rcmc_fa[i]/const.c*fr)
        data = (data * np.exp(4j * np.pi * rcmc_fa.reshape(
            (1, az_size, 1)) / const.c * fr.reshape((1, 1, rg_size))))
        data = np.fft.ifft(data, axis=2)

        if plot_rcmc_dopp:
            utils.image(np.abs(data[0]),
                        min=0.,
                        max=3. * np.mean(np.abs(data)),
                        cmap='gray',
                        aspect=np.float(rg_size) / np.float(az_size),
                        title='RCMC Data (Range Dopler Domain)',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep + 'plot_rcmc_dopp_%d.%s' %
                        (ch, plot_format))

        if plot_rcmc_time:
            rcmc_time = np.fft.ifft(data[0],
                                    axis=0)[:az_size_orig, :rg_size_orig]
            rcmc_time_max = np.max(np.abs(rcmc_time))
            utils.image(np.real(rcmc_time),
                        min=-rcmc_time_max,
                        max=rcmc_time_max,
                        cmap='gray',
                        aspect=np.float(rg_size) / np.float(az_size),
                        title='RCMC Data (Time Domain)',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep +
                        'plot_rcmc_time_real_%d.%s' % (ch, plot_format))
            utils.image(np.imag(rcmc_time),
                        min=-rcmc_time_max,
                        max=rcmc_time_max,
                        cmap='gray',
                        aspect=np.float(rg_size) / np.float(az_size),
                        title='RCMC Data (Time Domain)',
                        usetex=plot_tex,
                        save=plot_save,
                        save_path=plot_path + os.sep +
                        'plot_rcmc_time_imag_%d.%s' % (ch, plot_format))

        # Azimuth compression
        print('Applying azimuth compression... [Channel %d/%d]' %
              (ch + 1, num_ch))

        n_samp = 2 * (np.int(doppler_bw / (fa[1] - fa[0])) / 2)
        weighting = az_weighting - (1. - az_weighting) * np.cos(
            2 * np.pi * np.linspace(0, 1., n_samp))
        # Compensate amplitude loss

        L_win = np.sum(np.abs(weighting)**2) / weighting.size
        weighting /= np.sqrt(L_win)
        if fa.size > n_samp:
            zeros = np.zeros(az_size)
            zeros[0:n_samp] = weighting
            #zeros[:n_samp/2] = weighting[:n_samp/2]
            #zeros[-n_samp/2:] = weighting[-n_samp/2:]
            weighting = np.roll(zeros, int(-n_samp / 2))

        ph_ac = 4. * np.pi / l0 * sr0 * (
            np.sqrt(1. - (fa * l0 / 2. / v_ground)**2.) - 1.)
        #        for i in np.arange(rg_size):
        #            data[:,i] *= np.exp(1j*ph_ac)*weighting
        data = data * (np.exp(1j * ph_ac) * weighting).reshape((1, az_size, 1))

        data = np.fft.ifft(data, axis=1)

        print('Finishing... [Channel %d/%d]' % (ch + 1, num_ch))
        # Reduce to initial dimension
        data = data[:, :az_size_orig, :rg_size_orig]

        # Removal of non valid samples
        n_val_az_2 = np.floor(doppler_bw / 2. /
                              (2. * v_ground**2. / l0 / sr0) * prf / 2.) * 2.
        # data = raw_data[ch, n_val_az_2:(az_size_orig - n_val_az_2 - 1), :]
        data = data[:, n_val_az_2:(az_size_orig - n_val_az_2 - 1), :]
        if plot_image_valid:
            plt.figure()
            plt.imshow(np.abs(data[0]),
                       origin='lower',
                       vmin=0,
                       vmax=np.max(np.abs(data)),
                       aspect=np.float(rg_size_orig) / np.float(az_size_orig),
                       cmap='gray')
            plt.xlabel("Range")
            plt.ylabel("Azimuth")
            plt.savefig(
                os.path.join(plot_path,
                             ('plot_image_valid_%d.%s' % (ch, plot_format))))

        slc.append(data)

    # Save processed data
    slc = np.array(slc, dtype=np.complex)
    print("Shape of SLC: " + str(slc.shape), flush=True)
    proc_file = tpio.ProcFile(output_file, 'w', slc.shape)
    proc_file.set('slc*', slc)
    proc_file.close()

    print('-----------------------------------------')
    print(
        time.strftime("Processing finished [%Y-%m-%d %H:%M:%S]",
                      time.localtime()))
    print('-----------------------------------------')
Example #15
0
def l2_wavespectrum(cfg_file, proc_output_file, ocean_file, output_file):

    print(
        '-------------------------------------------------------------------')
    print(
        time.strftime("- OCEANSAR L2 Wavespectra: [%Y-%m-%d %H:%M:%S]",
                      time.localtime()))
    print(
        '-------------------------------------------------------------------')

    print('Initializing...')

    ## CONFIGURATION FILE
    cfg = tpio.ConfigFile(cfg_file)

    # SAR
    inc_angle = np.deg2rad(cfg.sar.inc_angle)
    f0 = cfg.sar.f0
    prf = cfg.sar.prf
    num_ch = cfg.sar.num_ch
    ant_L = cfg.sar.ant_L
    alt = cfg.sar.alt
    v_ground = cfg.sar.v_ground
    rg_bw = cfg.sar.rg_bw
    over_fs = cfg.sar.over_fs
    pol = cfg.sar.pol
    if pol == 'DP':
        polt = ['hh', 'vv']
    elif pol == 'hh':
        polt = ['hh']
    else:
        polt = ['vv']
        # L2 wavespectrum
    rg_ml = cfg.L2_wavespectrum.rg_ml
    az_ml = cfg.L2_wavespectrum.az_ml
    krg_ml = cfg.L2_wavespectrum.krg_ml
    kaz_ml = cfg.L2_wavespectrum.kaz_ml
    ml_win = cfg.L2_wavespectrum.ml_win
    plot_save = cfg.L2_wavespectrum.plot_save
    plot_path = cfg.L2_wavespectrum.plot_path
    plot_format = cfg.L2_wavespectrum.plot_format
    plot_tex = cfg.L2_wavespectrum.plot_tex
    plot_surface = cfg.L2_wavespectrum.plot_surface
    plot_proc_ampl = cfg.L2_wavespectrum.plot_proc_ampl
    plot_spectrum = cfg.L2_wavespectrum.plot_spectrum
    n_sublook = cfg.L2_wavespectrum.n_sublook
    sublook_weighting = cfg.L2_wavespectrum.sublook_az_weighting

    ## CALCULATE PARAMETERS
    if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True)
    k0 = 2. * np.pi * f0 / const.c
    rg_sampling = rg_bw * over_fs

    # PROCESSED RAW DATA
    proc_content = tpio.ProcFile(proc_output_file, 'r')
    proc_data = proc_content.get('slc*')
    proc_content.close()

    # OCEAN SURFACE
    surface = OceanSurface()
    surface.load(ocean_file, compute=['D', 'V'])
    surface.t = 0.

    # OUTPUT FILE
    output = open(output_file, 'w')

    # OTHER INITIALIZATIONS
    # Enable TeX
    if plot_tex:
        plt.rc('font', family='serif')
        plt.rc('text', usetex=True)

    # Create plots directory
    plot_path = os.path.dirname(output_file) + os.sep + plot_path
    if plot_save:
        if not os.path.exists(plot_path):
            os.makedirs(plot_path)

    # SURFACE VELOCITIES
    grg_grid_spacing = (const.c / 2. / rg_sampling / np.sin(inc_angle))
    rg_res_fact = grg_grid_spacing / surface.dx
    az_grid_spacing = (v_ground / prf)
    az_res_fact = az_grid_spacing / surface.dy
    res_fact = np.ceil(np.sqrt(rg_res_fact * az_res_fact))

    # SURFACE RADIAL VELOCITY
    v_radial_surf = surface.Vx * np.sin(inc_angle) - surface.Vz * np.cos(
        inc_angle)
    v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf,
                                                 res_fact * rg_ml,
                                                 axis=1),
                                    res_fact * az_ml,
                                    axis=0)
    v_radial_surf_mean = np.mean(v_radial_surf)
    v_radial_surf_std = np.std(v_radial_surf)
    v_radial_surf_ml_std = np.std(v_radial_surf_ml)

    # Expected mean azimuth shift
    sr0 = geosar.inc_to_sr(inc_angle, alt)
    avg_az_shift = -v_radial_surf_mean / v_ground * sr0
    std_az_shift = v_radial_surf_std / v_ground * sr0

    print('Starting Wavespectrum processing...')

    # Get dimensions & calculate region of interest
    rg_span = surface.Lx
    az_span = surface.Ly
    rg_size = proc_data[0].shape[2]
    az_size = proc_data[0].shape[1]

    # Note: RG is projected, so plots are Ground Range
    rg_min = 0
    rg_max = np.int(rg_span / (const.c / 2. / rg_sampling / np.sin(inc_angle)))
    az_min = np.int(az_size / 2. + (-az_span / 2. + avg_az_shift) /
                    (v_ground / prf))
    az_max = np.int(az_size / 2. + (az_span / 2. + avg_az_shift) /
                    (v_ground / prf))
    az_guard = np.int(std_az_shift / (v_ground / prf))
    az_min = az_min + az_guard
    az_max = az_max - az_guard
    if (az_max - az_min) < (2 * az_guard - 10):
        print('Not enough edge-effect free image')
        return

    # Adaptive coregistration
    if cfg.sar.L_total:
        ant_L = ant_L / np.float(num_ch)
        dist_chan = ant_L / 2
    else:
        if np.float(cfg.sar.Spacing) != 0:
            dist_chan = np.float(cfg.sar.Spacing) / 2
        else:
            dist_chan = ant_L / 2
    # dist_chan = ant_L/num_ch/2.
    print('ATI Spacing: %f' % dist_chan)
    inter_chan_shift_dist = dist_chan / (v_ground / prf)
    # Subsample shift in azimuth
    for chind in range(proc_data.shape[0]):
        shift_dist = -chind * inter_chan_shift_dist
        shift_arr = np.exp(
            -2j * np.pi * shift_dist *
            np.roll(np.arange(az_size) - az_size / 2, int(-az_size / 2)) /
            az_size)
        shift_arr = shift_arr.reshape((1, az_size, 1))
        proc_data[chind] = np.fft.ifft(np.fft.fft(proc_data[chind], axis=1) *
                                       shift_arr,
                                       axis=1)

    # First dimension is number of channels, second is number of pols
    ch_dim = proc_data.shape[0:2]
    npol = ch_dim[1]
    proc_data_rshp = [np.prod(ch_dim), proc_data.shape[2], proc_data.shape[3]]
    # Compute extended covariance matrices...
    proc_data = proc_data.reshape(proc_data_rshp)
    # Intensities
    i_all = []
    for chind in range(proc_data.shape[0]):
        this_i = utils.smooth(utils.smooth(np.abs(proc_data[chind])**2.,
                                           rg_ml,
                                           axis=1,
                                           window=ml_win),
                              az_ml,
                              axis=0,
                              window=ml_win)
        i_all.append(this_i[az_min:az_max, rg_min:rg_max])
    i_all = np.array(i_all)

    ## Wave spectra computation
    ## Processed Doppler bandwidth
    proc_bw = cfg.processing.doppler_bw
    PRF = cfg.sar.prf
    fa = np.fft.fftfreq(proc_data_rshp[1], 1 / PRF)
    # Filters
    sublook_filt = []
    sublook_bw = proc_bw / n_sublook
    for i_sbl in range(n_sublook):
        fa_min = -1 * proc_bw / 2 + i_sbl * sublook_bw
        fa_max = fa_min + sublook_bw
        fa_c = (fa_max + fa_min) / 2
        win = np.where(
            np.logical_and(fa > fa_min, fa < fa_max),
            (sublook_weighting -
             (1 - sublook_weighting) * np.cos(2 * np.pi *
                                              (fa - fa_min) / sublook_bw)), 0)
        sublook_filt.append(win)

    # Apply sublooks
    az_downsmp = int(np.floor(az_ml / 2))
    rg_downsmp = int(np.floor(rg_ml / 2))
    sublooks = []
    sublooks_f = []
    for i_sbl in range(n_sublook):
        # Go to frequency domain
        sublook_data = np.fft.ifft(np.fft.fft(proc_data, axis=1) *
                                   sublook_filt[i_sbl].reshape(
                                       (1, proc_data_rshp[1], 1)),
                                   axis=1)
        # Get intensities
        sublook_data = np.abs(sublook_data)**2
        # Multilook
        for chind in range(proc_data.shape[0]):
            sublook_data[chind] = utils.smooth(utils.smooth(
                sublook_data[chind], rg_ml, axis=1),
                                               az_ml,
                                               axis=0)
        # Keep only valid part and down sample
        sublook_data = sublook_data[:, az_min:az_max:az_downsmp,
                                    rg_min:rg_max:rg_downsmp]
        sublooks.append(sublook_data)
        sublooks_f.append(
            np.fft.fft(np.fft.fft(sublook_data - np.mean(sublook_data),
                                  axis=1),
                       axis=2))

    kaz = 2 * np.pi * np.fft.fftfreq(sublook_data.shape[1],
                                     az_downsmp * az_grid_spacing)
    kgrg = 2 * np.pi * np.fft.fftfreq(sublook_data.shape[2],
                                      rg_downsmp * grg_grid_spacing)

    xspecs = []
    tind = 0
    xspec_lut = np.zeros((len(sublooks), len(sublooks)), dtype=int)

    for ind1 in range(len(sublooks)):
        for ind2 in range(ind1 + 1, len(sublooks)):
            xspec_lut[ind1, ind2] = tind
            tind = tind + 1
            xspec = sublooks_f[ind1] * np.conj(sublooks_f[ind2])
            xspecs.append(xspec)

    with open(output_file, 'wb') as output:
        pickle.dump(xspecs, output, pickle.HIGHEST_PROTOCOL)
        pickle.dump([kaz, kgrg], output, pickle.HIGHEST_PROTOCOL)

    # PROCESSED AMPLITUDE
    if plot_proc_ampl:
        for pind in range(npol):
            save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind] + '.' +
                         plot_format)
            plt.figure()
            plt.imshow(utils.db(i_all[pind]),
                       aspect='equal',
                       origin='lower',
                       vmin=utils.db(np.max(i_all[pind])) - 20,
                       extent=[0., rg_span, 0., az_span],
                       interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

            save_path = (plot_path + os.sep + 'amp_' + polt[pind] + '.' +
                         plot_format)
            int_img = (i_all[pind])**0.5
            vmin = np.mean(int_img) - 3 * np.std(int_img)
            vmax = np.mean(int_img) + 3 * np.std(int_img)
            plt.figure()
            plt.imshow(int_img,
                       aspect='equal',
                       origin='lower',
                       vmin=vmin,
                       vmax=vmax,
                       extent=[0., rg_span, 0., az_span],
                       interpolation='nearest',
                       cmap='viridis')
            plt.xlabel('Ground range [m]')
            plt.ylabel('Azimuth [m]')
            plt.title("Amplitude")
            plt.colorbar()
            plt.savefig(save_path)

    ## FIXME: I am plotting the cross spectrum for the first polarization and the first channel only, which is not
    ## very nice. To be fixed, in particular por multiple polarizations

    for ind1 in range(len(sublooks)):
        for ind2 in range(ind1 + 1, len(sublooks)):
            save_path_abs = os.path.join(plot_path,
                                         ('xspec_abs_%i%i.%s' %
                                          (ind1 + 1, ind2 + 1, plot_format)))
            save_path_pha = os.path.join(plot_path,
                                         ('xspec_pha_%i%i.%s' %
                                          (ind1 + 1, ind2 + 1, plot_format)))
            save_path_im = os.path.join(plot_path,
                                        ('xspec_im_%i%i.%s' %
                                         (ind1 + 1, ind2 + 1, plot_format)))
            ml_xspec = utils.smooth(utils.smooth(np.fft.fftshift(
                xspecs[xspec_lut[ind1, ind2]][0]),
                                                 krg_ml,
                                                 axis=1),
                                    kaz_ml,
                                    axis=0)
            plt.figure()
            plt.imshow(np.abs(ml_xspec),
                       origin='lower',
                       cmap='inferno_r',
                       extent=[kgrg.min(),
                               kgrg.max(),
                               kaz.min(),
                               kaz.max()],
                       interpolation='nearest')
            plt.grid(True)
            pltax = plt.gca()
            pltax.set_xlim((-0.1, 0.1))
            pltax.set_ylim((-0.1, 0.1))
            northarr_length = 0.075  # np.min([surface_full.kx.max(), surface_full.ky.max()])
            pltax.arrow(0,
                        0,
                        -northarr_length * np.sin(np.radians(cfg.sar.heading)),
                        northarr_length * np.cos(np.radians(cfg.sar.heading)),
                        fc="k",
                        ec="k")
            plt.xlabel('$k_x$ [rad/m]')
            plt.ylabel('$k_y$ [rad/m]')
            plt.colorbar()
            plt.savefig(save_path_abs)
            plt.close()
            plt.figure()
            ml_xspec_pha = np.angle(ml_xspec)
            ml_xspec_im = np.imag(ml_xspec)
            immax = np.abs(ml_xspec_im).max()
            whimmax = np.abs(ml_xspec_im).flatten().argmax()
            phmax = np.abs(ml_xspec_pha.flatten()[whimmax])
            plt.imshow(ml_xspec_pha,
                       origin='lower',
                       cmap='bwr',
                       extent=[kgrg.min(),
                               kgrg.max(),
                               kaz.min(),
                               kaz.max()],
                       interpolation='nearest',
                       vmin=-2 * phmax,
                       vmax=2 * phmax)
            plt.grid(True)
            pltax = plt.gca()
            pltax.set_xlim((-0.1, 0.1))
            pltax.set_ylim((-0.1, 0.1))
            northarr_length = 0.075  # np.min([surface_full.kx.max(), surface_full.ky.max()])
            pltax.arrow(0,
                        0,
                        -northarr_length * np.sin(np.radians(cfg.sar.heading)),
                        northarr_length * np.cos(np.radians(cfg.sar.heading)),
                        fc="k",
                        ec="k")
            plt.xlabel('$k_x$ [rad/m]')
            plt.ylabel('$k_y$ [rad/m]')
            plt.colorbar()
            plt.savefig(save_path_pha)
            plt.close()
            plt.figure()
            plt.imshow(ml_xspec_im,
                       origin='lower',
                       cmap='bwr',
                       extent=[kgrg.min(),
                               kgrg.max(),
                               kaz.min(),
                               kaz.max()],
                       interpolation='nearest',
                       vmin=-2 * immax,
                       vmax=2 * immax)
            plt.grid(True)
            pltax = plt.gca()
            pltax.set_xlim((-0.1, 0.1))
            pltax.set_ylim((-0.1, 0.1))
            northarr_length = 0.075  # np.min([surface_full.kx.max(), surface_full.ky.max()])
            pltax.arrow(0,
                        0,
                        -northarr_length * np.sin(np.radians(cfg.sar.heading)),
                        northarr_length * np.cos(np.radians(cfg.sar.heading)),
                        fc="k",
                        ec="k")
            plt.xlabel('$k_x$ [rad/m]')
            plt.ylabel('$k_y$ [rad/m]')
            plt.colorbar()
            plt.savefig(save_path_im)
            plt.close()