class RecOp(Op): def init_op(self): self.ocr_reader = OCRReader( char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() raw_im = base64.b64decode(input_dict["image"].encode('utf8')) data = np.fromstring(raw_im, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) feed_list = [] max_wh_ratio = 0 ## Many mini-batchs, the type of feed_data is list. max_batch_size = 6 # len(dt_boxes) # If max_batch_size is 0, skipping predict stage if max_batch_size == 0: return {}, True, None, "" boxes_size = max_batch_size rem = boxes_size % max_batch_size h, w = im.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) _, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size) norm_img = norm_img[np.newaxis, :] feed = {"x": norm_img.copy()} feed_list.append(feed) return feed_list, False, None, "" def postprocess(self, input_dicts, fetch_data, data_id, log_id): res_list = [] if isinstance(fetch_data, dict): if len(fetch_data) > 0: rec_batch_res = self.ocr_reader.postprocess( fetch_data, with_score=True) for res in rec_batch_res: res_list.append(res[0]) elif isinstance(fetch_data, list): for one_batch in fetch_data: one_batch_res = self.ocr_reader.postprocess( one_batch, with_score=True) for res in one_batch_res: res_list.append(res[0]) res = {"res": str(res_list)} return res, None, ""
class RecOp(Op): def init_op(self): self.ocr_reader = OCRReader( char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") self.get_rotate_crop_image = GetRotateCropImage() self.sorted_boxes = SortedBoxes() def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() im = input_dict["image"] dt_boxes = input_dict["dt_boxes"] dt_boxes = self.sorted_boxes(dt_boxes) feed_list = [] img_list = [] max_wh_ratio = 0 for i, dtbox in enumerate(dt_boxes): boximg = self.get_rotate_crop_image(im, dt_boxes[i]) img_list.append(boximg) h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) _, w, h = self.ocr_reader.resize_norm_img(img_list[0], max_wh_ratio).shape imgs = np.zeros((len(img_list), 3, w, h)).astype('float32') for id, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) imgs[id] = norm_img print("rec image shape", imgs.shape) feed = {"x": imgs.copy()} return feed, False, None, "" def postprocess(self, input_dicts, fetch_dict, log_id): rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True) res_lst = [] for res in rec_res: res_lst.append(res[0]) res = {"res": str(res_lst)} return res, None, ""
client = Client() # TODO:load_client need to load more than one client model. # this need to figure out some details. client.load_client_config(sys.argv[1:]) client.connect(["127.0.0.1:9293"]) import paddle test_img_dir = "test_img/" ocr_reader = OCRReader(char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") def cv2_to_base64(image): return base64.b64encode(image).decode( 'utf8') #data.tostring()).decode('utf8') for img_file in os.listdir(test_img_dir): with open(os.path.join(test_img_dir, img_file), 'rb') as file: image_data = file.read() image = cv2_to_base64(image_data) res_list = [] fetch_map = client.predict(feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True) one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True) for res in one_batch_res: res_list.append(res[0]) res = {"res": str(res_list)} print(res)
class RecOp(Op): def init_op(self): self.ocr_reader = OCRReader( char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") self.get_rotate_crop_image = GetRotateCropImage() self.sorted_boxes = SortedBoxes() def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() raw_im = input_dict["image"] data = np.frombuffer(raw_im, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) dt_boxes = input_dict["dt_boxes"] dt_boxes = self.sorted_boxes(dt_boxes) feed_list = [] img_list = [] max_wh_ratio = 0 ## Many mini-batchs, the type of feed_data is list. max_batch_size = 6 # len(dt_boxes) # If max_batch_size is 0, skipping predict stage if max_batch_size == 0: return {}, True, None, "" boxes_size = len(dt_boxes) batch_size = boxes_size // max_batch_size rem = boxes_size % max_batch_size for bt_idx in range(0, batch_size + 1): imgs = None boxes_num_in_one_batch = 0 if bt_idx == batch_size: if rem == 0: continue else: boxes_num_in_one_batch = rem elif bt_idx < batch_size: boxes_num_in_one_batch = max_batch_size else: _LOGGER.error( "batch_size error, bt_idx={}, batch_size={}".format( bt_idx, batch_size)) break start = bt_idx * max_batch_size end = start + boxes_num_in_one_batch img_list = [] for box_idx in range(start, end): boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx]) img_list.append(boximg) h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) _, w, h = self.ocr_reader.resize_norm_img(img_list[0], max_wh_ratio).shape imgs = np.zeros( (boxes_num_in_one_batch, 3, w, h)).astype('float32') for id, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) imgs[id] = norm_img feed = {"x": imgs.copy()} feed_list.append(feed) return feed_list, False, None, "" def postprocess(self, input_dicts, fetch_data, data_id, log_id): res_list = [] if isinstance(fetch_data, dict): if len(fetch_data) > 0: rec_batch_res = self.ocr_reader.postprocess(fetch_data, with_score=True) for res in rec_batch_res: res_list.append(res[0]) elif isinstance(fetch_data, list): for one_batch in fetch_data: one_batch_res = self.ocr_reader.postprocess(one_batch, with_score=True) for res in one_batch_res: res_list.append(res[0]) res = {"res": str(res_list)} return res, None, ""
class OCRService(WebService): def init_det_debugger(self, det_model_config): self.det_preprocess = Sequential([ ResizeByFactor(32, 960), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) self.det_client = LocalPredictor() if sys.argv[1] == 'gpu': self.det_client.load_model_config( det_model_config, use_gpu=True, gpu_id=0) elif sys.argv[1] == 'cpu': self.det_client.load_model_config(det_model_config) self.ocr_reader = OCRReader( char_dict_path="../../../ppocr/utils/ppocr_keys_v1.txt") def preprocess(self, feed=[], fetch=[]): data = base64.b64decode(feed[0]["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) ori_h, ori_w, _ = im.shape det_img = self.det_preprocess(im) _, new_h, new_w = det_img.shape det_img = det_img[np.newaxis, :] det_img = det_img.copy() det_out = self.det_client.predict( feed={"x": det_img}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True) filter_func = FilterBoxes(10, 10) post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) sorted_boxes = SortedBoxes() ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w] dt_boxes_list = post_func(det_out["save_infer_model/scale_0.tmp_1"], [ratio_list]) dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w]) dt_boxes = sorted_boxes(dt_boxes) get_rotate_crop_image = GetRotateCropImage() img_list = [] max_wh_ratio = 0 for i, dtbox in enumerate(dt_boxes): boximg = get_rotate_crop_image(im, dt_boxes[i]) img_list.append(boximg) h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) if len(img_list) == 0: return [], [] _, w, h = self.ocr_reader.resize_norm_img(img_list[0], max_wh_ratio).shape imgs = np.zeros((len(img_list), 3, w, h)).astype('float32') for id, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) imgs[id] = norm_img feed = {"x": imgs.copy()} fetch = ["save_infer_model/scale_0.tmp_1"] return feed, fetch, True def postprocess(self, feed={}, fetch=[], fetch_map=None): rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True) res_lst = [] for res in rec_res: res_lst.append(res[0]) res = {"res": res_lst} return res