def testStableODE2(self):
        iv = np.array([1.0])
        h: np.float = 0.01

        y = odesolvers.ExplicitEulerSolver(stableode, iv, self.t0, self.tn, h)

        self.assertEqual(y[0], iv)
        self.assertEqual(y[1], (y[0] - h))
    def testConstantODE2(self):
        iv = np.array([1.0])
        h: np.float = 0.1

        y = odesolvers.ExplicitEulerSolver(constantode, iv, self.t0, self.tn,
                                           h)

        self.assertEqual(y[0], iv)
        self.assertEqual(y[1], (y[0] + h))
    def testStiffODE2(self):
        iv = np.array([1.0, 2.0])
        h: np.float = 0.05

        N: np.uint = np.uint(np.ceil((self.tn - self.t0) / h))
        # final step
        y = odesolvers.ExplicitEulerSolver(stiffode, iv, self.t0, self.tn, h)

        self.assertEqual(y[0, 0], iv[0])
        self.assertEqual(y[0, 1], iv[1])
        self.assertGreater(np.absolute(y[N, 1] - y[0, 1]), 3)
    def testMultivariableODE(self):
        iv = np.array([1.0, 2.0])
        h: np.float = 0.01

        y = odesolvers.ExplicitEulerSolver(multivariableode, iv, self.t0,
                                           self.tn, h)

        self.assertEqual(y[0, 0], iv[0])
        self.assertEqual(y[0, 1], iv[1])
        self.assertEqual(y[1, 0], (iv[0] + h * (-iv[0] + iv[1])))
        self.assertEqual(y[1, 1], (iv[1] - h * iv[1]))
Example #5
0
		:type t: np.float
		:type x: np.array[float]
		:return: Derivative of state at current time
		:rtype: np.array[float]

	"""
    xprime = np.empty([2], float)

    xprime[0] = -x[0]
    xprime[1] = -100 * (x[1] - np.sin(t)) + np.cos(t)

    return xprime


if __name__ == '__main__':
    iv = np.array([1.0, 2.0])
    t0: np.float = 0.0
    tn: np.float = 1.0

    h = np.array([0.01, 0.05])

    for hi in np.nditer(h):
        # solving the ODE
        y = odesolvers.ExplicitEulerSolver(hw2ex4ode, iv, t0, tn, hi)

        # plotting the results
        odesolvers.plotODEsol(y[:, 0], t0, hi, 'y1(t)')
        tikzplotlib.save(f'y1-{hi}.tex')
        odesolvers.plotODEsol(y[:, 1], t0, hi, 'y2(t)')
        tikzplotlib.save(f'y2-{hi}.tex')