Example #1
0
def source_xy(img, ota, gapmask, filter, inst):
    """
    This function will return the x,y positions of sources found by
    :py:func:`source_find` that are not too close to gaps or the edges of the
    ota.

    Parameters
    ----------
    img : str
        Name of image
    ota : str
        Name of OTA
    int : str
        Version of ODI used, ``podi`` or ``5odi``

    Note
    ----
    This function produces a ``csv`` file in ``odi.sourcepath`` with the
    following naming convention ``'source_'+ota+'.'+img.base()+'.xy'``.


    """
    image = odi.reprojpath + 'reproj_' + ota + '.' + img.stem()
    #image = odi.bgsubpath+'bgsub_'+ota+'.'+img.stem()
    input_xy = odi.sourcepath + 'source_' + ota + '.' + img.base() + '.csv'
    outputxy = odi.sourcepath + 'source_' + ota + '.' + img.base() + '.xy'
    id, xcentroid, ycentroid, ra_icrs_centroid, dec_icrs_centroid, source_sum, max_value, elongation = np.loadtxt(
        input_xy,
        usecols=(0, 1, 2, 3, 4, 5, 6, 7),
        unpack=True,
        delimiter=',',
        skiprows=1)
    QR_raw = odi.fits.open(image)
    # hdu_ota = QR_raw[0]

    hdu_ota = odi.tan_header_fix(QR_raw[0])

    w = odi.WCS(hdu_ota.header)
    xdim = hdu_ota.header['NAXIS1']
    ydim = hdu_ota.header['NAXIS2']

    with open(outputxy, 'w+') as fxy:
        for i, c in enumerate(xcentroid):
            coords2 = [[xcentroid[i], ycentroid[i]]]
            pixcrd2 = coords2
            if 100.0 <= pixcrd2[0][0] < xdim - 100.0 and 100.0 <= pixcrd2[0][
                    1] < ydim - 100.0 and elongation[i] <= 1.75:
                # make an image cutout of the gap mask
                x, y = int(round(pixcrd2[0][0])), int(round(pixcrd2[0][1]))
                cutout = gapmask[y - 30:y + 30, x - 30:x + 30]
                if not (cutout.astype(bool)).any():
                    print >> fxy, pixcrd2[0][0], pixcrd2[0][1], id[
                        i], ra_icrs_centroid[i], dec_icrs_centroid[
                            i], source_sum[i], max_value[i], elongation[i]
    QR_raw.close()
    fxy.close()
Example #2
0
def source_find(img, ota, inst, nbg_std=10.0):
    """
    This function will find sources on an OTA using the detect_sources module
    from photutils. This will return of csv file of the sources found with the
    x,y,Ra,Dec,source_sum,max_value, and elongation of the source. The
    elongation parameter is semimajor_axis / semiminor_axis.
    This output is needed for the source_xy function. This function is set
    to work on the reprojected otas.

    Parameters
    ----------
    img : str
        Name of image
    ota : str
        Name of OTA
    int : str
        Version of ODI used, ``podi`` or ``5odi``
    nbg_std : float
        Multiplier to the standard deviation of the background. It has a default
        value of ``10`` to only detect bright sources

    Note
    ----
    This function produces a ``csv`` file in ``odi.sourcepath`` with the
    following naming convention ``'source_'+ota+'.'+img.base()+'.csv'``.

    """
    image = odi.reprojpath + 'reproj_' + ota + '.' + img.stem()
    QR_raw = odi.fits.open(image)
    # hdu_ota = QR_raw[0]

    hdu_ota = odi.tan_header_fix(QR_raw[0])

    w = odi.WCS(hdu_ota.header)
    # needed to remind astropy that the header says RADESYS=ICRS
    # your mileage may vary (logic probably needed here to handle cases)
    w.wcs.radesys = 'ICRS'
    # if inst == '5odi':
    #     w.wcs.ctype = ["RA---TPV", "DEC--TPV"]
    bg_mean, bg_median, bg_std = odi.mask_ota(img, ota, reproj=True)
    threshold = bg_median + (bg_std * nbg_std)
    print bg_mean, bg_median, bg_std
    segm_img = detect_sources(hdu_ota.data, threshold, npixels=20)
    source_props = source_properties(hdu_ota.data, segm_img, wcs=w)

    columns = [
        'id', 'xcentroid', 'ycentroid', 'ra_icrs_centroid',
        'dec_icrs_centroid', 'source_sum', 'max_value', 'elongation'
    ]
    source_tbl = properties_table(source_props, columns=columns)
    source_tbl_df = source_tbl.to_pandas()

    outputfile = odi.sourcepath + 'source_' + ota + '.' + img.base() + '.csv'

    source_tbl_df.to_csv(outputfile, index=False)
    QR_raw.close()
Example #3
0
def get_gaia_coords(img,
                    ota,
                    inst,
                    output='test.gaia',
                    cluster=False,
                    **kwargs):
    """
    Query the online Gaia DR1 based on the central coordinates of the current
    OTA. If the ``cluster`` flag is set to ``True``, the querey will avoid
    a crowded region based on coordinates and a radius set by the user in
    the configuration files.

    Parameters
    ----------
    img : ODIImage or StackedImage object
        Name of image
    ota : str
        Name of OTA
    int : str
        Version of ODI used, ``podi`` or ``5odi``

    """
    from astropy import units as u
    from astropy.coordinates import SkyCoord
    try:
        from astroquery.vizier import Vizier
        from astropy import __version__ as astropyversion
    except ImportError:
        print "astroquery not installed"
        print "try  pip --user --no-deps install astroquery or contact admin"
    hdulist = fits.open(img.f)
    if ota == 'None':
        hdu_ota = hdulist[0]

    else:
        hdu_ota = odi.tan_header_fix(hdulist[ota])

    w = WCS(hdu_ota.header)

    naxis1 = hdu_ota.header['NAXIS1']
    naxis2 = hdu_ota.header['NAXIS2']
    ota_center_radec = w.wcs_pix2world([[naxis1 / 2., naxis2 / 2.]], 1)

    corners = w.calc_footprint()

    center_skycoord = SkyCoord(ota_center_radec[0][0] * u.deg,
                               ota_center_radec[0][1] * u.deg,
                               frame='icrs')
    corner_skycoord = SkyCoord(corners[0, 0] * u.deg,
                               corners[0, 1] * u.deg,
                               frame='icrs')
    cone_radius = center_skycoord.separation(corner_skycoord).value
    # tqdm.write('{:4.0f} {:4.0f} {:6.4f}'.format(naxis1/2., naxis2/2., cone_radius))

    #Set up vizier query for Gaia DR1
    #Taken from example at: github.com/mommermi/photometrypipeline
    vquery = Vizier(columns=[
        'RA_ICRS', 'DE_ICRS', 'e_RA_ICRS', 'e_DE_ICRS', 'phot_g_mean_mag'
    ],
                    column_filters={"phot_g_mean_mag": ("<%f" % 21.0)},
                    row_limit=-1)
    gaia_table = vquery.query_region(SkyCoord(ra=ota_center_radec[0][0],
                                              dec=ota_center_radec[0][1],
                                              unit=(u.deg, u.deg),
                                              frame='icrs'),
                                     radius=cone_radius * u.deg,
                                     catalog=['I/337/gaia'])[0]

    # print gaia_table

    hdulist.close()
    if cluster == True:
        try:
            racenter = kwargs['racenter']
            deccenter = kwargs['deccenter']
            min_radius = kwargs['min_radius']
            G_lim = kwargs['G_lim']
        except KeyError:
            print 'Must provide racenter, deccenter, and min_radius'
        cluster_center = SkyCoord(racenter * u.degree,
                                  deccenter * u.degree,
                                  frame='icrs')
        gaia_coords = SkyCoord(gaia_table['RA_ICRS'],
                               gaia_table['DE_ICRS'],
                               frame='icrs')
        dist_from_center = cluster_center.separation(gaia_coords).arcmin
        gaia_table['dis'] = dist_from_center
        # ota_gaia_df = ota_gaia_df[(ota_gaia_df.dis >= min_radius) &
        #   (ota_gaia_df.phot_g_mean_mag <= G_lim)]
        gaia_table = gaia_table[gaia_table['dis'] > min_radius]

    ra_min, ra_max = min(corners[:, 0]), max(corners[:, 0])
    dec_min, dec_max = min(corners[:, 1]), max(corners[:, 1])
    # print ra_min, ra_max, dec_min, dec_max

    gaia_table_cut = gaia_table[(gaia_table['RA_ICRS'] > ra_min)
                                & (gaia_table['RA_ICRS'] < ra_max) &
                                (gaia_table['DE_ICRS'] > dec_min) &
                                (gaia_table['DE_ICRS'] < dec_max)]
    gaia_table_cut['e_RA_ICRS'].convert_unit_to(u.deg)
    gaia_table_cut['e_DE_ICRS'].convert_unit_to(u.deg)

    ota_gaia_df = gaia_table_cut.to_pandas()

    cols_needed = ['RA_ICRS', 'DE_ICRS', '__Gmag_', 'e_RA_ICRS', 'e_DE_ICRS']

    ota_gaia_df = ota_gaia_df[cols_needed]
    ota_gaia_df.columns = ['ra', 'dec', 'phot_g_mean_mag', 'e_ra', 'e_dec']

    gaia_catalog_out = output
    ota_gaia_df.to_csv(
        gaia_catalog_out,
        columns=['ra', 'dec', 'phot_g_mean_mag', 'e_ra', 'e_dec'],
        index=False)
    return ota_gaia_df
Example #4
0
def get_sdss_coords_offline(img, ota, inst, output='test.sdss'):
    """
    Pull out and parse the ``CAT.PHOTCALIB`` table from ``img`` header. This
    function will separate the SDSS stars in ``CAT.PHOTCALIB`` based on which
    ``ota`` they fall on.

    Parameters
    ----------
    img : str
        Name of image
    ota : str
        Name of OTA
    int : str
        Version of ODI used, ``podi`` or ``5odi``

    Returns
    -------
    xdim : int
        Size of OTA in the x direction ``NAXIS1``
    ydim : int
        Size of OTA in the y direction ``NAXIS2``

    Note
    ----
    If the images being processed do not fall in the SDSS footprint,
    the QuickReduce pipeline will use PanSTARRS. This function will still
    pull out these stars and treat them as SDSS stars. There will be no
    ``u`` magnitudes available, however.
    """
    hdulist = odi.fits.open(img.f)
    hdu = odi.tan_header_fix(hdulist[ota])

    xdim = hdu.header['NAXIS1']
    ydim = hdu.header['NAXIS2']
    try:
        sdss_cat_img = hdulist['CAT.PHOTCALIB']
        cat_img_data = Table.read(sdss_cat_img, format='fits')
        # print cat_img_data.colnames
        # force little-endian byte order to make FITS play nice with pandas
        sdss_cat_img_df = cat_img_data.to_pandas()
        # sdss_cat_img_df = pd.DataFrame.from_dict(cat_img_dict)
        # print sdss_cat_img_df.keys()
        ota = float(ota.strip('OTA.SCI'))
        # print 'catalog source:', hdulist[0].header['PHOTMCAT']
        if 'sdss_dr' in hdulist[0].header['PHOTMCAT']:
            try:
                # print sdss_cat_img_df.columns
                ota_matches_df = sdss_cat_img_df.iloc[np.where(
                    sdss_cat_img_df[u'ODI_OTA'] == ota)]
                needed_columns = [
                    u'REF_RA', u'REF_DEC', u'REF_U', u'REF_ERR_U', u'REF_G',
                    u'REF_ERR_G', u'REF_R', u'REF_ERR_R', u'REF_I',
                    u'REF_ERR_I', u'REF_Z', u'REF_ERR_Z', u'ODI_OTA'
                ]

                output_df = ota_matches_df[needed_columns]
                output_df.to_csv(output, index=False)
            except KeyError:
                oditable = hdulist['CAT.ODI'].data
                oditalbe_df = pd.DataFrame.from_dict(oditable)

                ODI_RA = np.squeeze(np.array(oditalbe_df['RA']))
                ODI_DEC = np.squeeze(np.array(oditalbe_df['DEC']))
                ODI_OTA = np.squeeze(np.array(oditalbe_df['OTA']))

                junkdict = OrderedDict([(u'ODI_RA', ODI_RA),
                                        (u'ODI_DEC', ODI_DEC),
                                        (u'ODI_OTA', ODI_OTA.astype(float))])
                junk_df = pd.DataFrame.from_dict(junkdict)

                matched_df = pd.merge(sdss_cat_img_df,
                                      junk_df,
                                      on=[u'ODI_RA', u'ODI_DEC'],
                                      how='inner')
                # print matched_df.columns
                needed_columns = np.insert(sdss_cat_img_df.columns.values, 0,
                                           u'ODI_OTA')

                full_df = matched_df[needed_columns]
                ota_matches_df = full_df.iloc[np.where(
                    full_df[u'ODI_OTA'] == ota)]
                needed_columns = [
                    u'SDSS_RA', u'SDSS_DEC', u'SDSS_MAG_U', u'SDSS_ERR_U',
                    u'SDSS_MAG_G', u'SDSS_ERR_G', u'SDSS_MAG_R', u'SDSS_ERR_R',
                    u'SDSS_MAG_I', u'SDSS_ERR_I', u'SDSS_MAG_Z', u'SDSS_ERR_Z',
                    u'ODI_OTA'
                ]
                output_df = ota_matches_df[needed_columns]
                output_df.to_csv(output, index=False)
        else:
            ota_matches_df = sdss_cat_img_df.iloc[np.where(
                sdss_cat_img_df[u'ODI_OTA'] == ota)]
            ota_matches_df = ota_matches_df.reset_index()
            junk_u = np.ones(len(ota_matches_df))
            junk_u_err = np.ones(len(ota_matches_df))
            ota_matches_df[u'IPP_MAG_U'] = junk_u
            ota_matches_df[u'IPP_ERR_U'] = junk_u_err

            needed_columns = [
                u'IPP_RA', u'IPP_DEC', u'IPP_MAG_U', u'IPP_ERR_U',
                u'IPP_MAG_G', u'IPP_ERR_G', u'IPP_MAG_R', u'IPP_ERR_R',
                u'IPP_MAG_I', u'IPP_ERR_I', u'IPP_MAG_Z', u'IPP_ERR_Z',
                u'ODI_OTA'
            ]

            output_df = ota_matches_df[needed_columns]
            output_df.to_csv(output, index=False)

        if 'SDSS' in hdulist[0].header['PHOTMCAT']:
            try:
                # print sdss_cat_img_df.columns
                ota_matches_df = sdss_cat_img_df.iloc[np.where(
                    sdss_cat_img_df[u'ODI_OTA'] == ota)]
                needed_columns = [
                    u'SDSS_RA', u'SDSS_DEC', u'SDSS_MAG_U', u'SDSS_ERR_U',
                    u'SDSS_MAG_G', u'SDSS_ERR_G', u'SDSS_MAG_R', u'SDSS_ERR_R',
                    u'SDSS_MAG_I', u'SDSS_ERR_I', u'SDSS_MAG_Z', u'SDSS_ERR_Z',
                    u'ODI_OTA'
                ]

                output_df = ota_matches_df[needed_columns]
                output_df.to_csv(output, index=False)
            except KeyError:
                oditable = hdulist['CAT.ODI'].data
                oditalbe_df = pd.DataFrame.from_dict(oditable)

                ODI_RA = np.squeeze(np.array(oditalbe_df['RA']))
                ODI_DEC = np.squeeze(np.array(oditalbe_df['DEC']))
                ODI_OTA = np.squeeze(np.array(oditalbe_df['OTA']))

                junkdict = OrderedDict([(u'ODI_RA', ODI_RA),
                                        (u'ODI_DEC', ODI_DEC),
                                        (u'ODI_OTA', ODI_OTA.astype(float))])
                junk_df = pd.DataFrame.from_dict(junkdict)

                matched_df = pd.merge(sdss_cat_img_df,
                                      junk_df,
                                      on=[u'ODI_RA', u'ODI_DEC'],
                                      how='inner')
                # print matched_df.columns
                needed_columns = np.insert(sdss_cat_img_df.columns.values, 0,
                                           u'ODI_OTA')

                full_df = matched_df[needed_columns]
                ota_matches_df = full_df.iloc[np.where(
                    full_df[u'ODI_OTA'] == ota)]
                needed_columns = [
                    u'SDSS_RA', u'SDSS_DEC', u'SDSS_MAG_U', u'SDSS_ERR_U',
                    u'SDSS_MAG_G', u'SDSS_ERR_G', u'SDSS_MAG_R', u'SDSS_ERR_R',
                    u'SDSS_MAG_I', u'SDSS_ERR_I', u'SDSS_MAG_Z', u'SDSS_ERR_Z',
                    u'ODI_OTA'
                ]
                output_df = ota_matches_df[needed_columns]
                output_df.to_csv(output, index=False)
    except KeyError:
        print 'missing PHOTCALIB table, skipping SDSS'
    hdulist.close()
    return xdim, ydim
Example #5
0
def refetch_sdss_coords_offline(img, ota, gapmask, inst, gmaglim=19.):
    image = odi.reprojpath + 'reproj_' + ota + '.' + img.stem()
    outcoords = odi.coordspath + 'reproj_' + ota + '.' + img.base() + '.sdss'

    hdulist = odi.fits.open(image)
    hdu = odi.tan_header_fix(hdulist[0])
    xdim = hdu.header['NAXIS1']
    ydim = hdu.header['NAXIS2']

    if not os.path.isfile(outcoords):
        xc = xdim / 2.0
        yc = ydim / 2.0

        # get the CD matrix keywords
        cd11 = hdu.header['CD1_1']
        cd22 = hdu.header['CD2_2']
        # try to load cd12 and cd21, if they don't exist, set them to zero
        try:
            cd12 = hdu.header['CD1_2']
        except:
            cd12 = 0.0
        try:
            cd21 = hdu.header['CD2_1']
        except:
            cd21 = 0.0

        # print xdim, ydim, cd12, cd21

        # Parse the WCS keywords in the primary HDU
        w = odi.WCS(hdu.header)

        # Some pixel coordinates of interest.
        pixcrd = np.array([[xc, yc]], np.float_)

        # Convert pixel coordinates to world coordinates
        # The second argument is "origin" -- in this case we're declaring we
        # have 1-based (Fortran-like) coordinates.
        world = w.wcs_pix2world(pixcrd, 1)
        # print(world)
        rac = world[0][0]
        decc = world[0][1]
        # print xc, yc, rac, decc

        # get the biggest radius of the image in arcminutes
        pixscal1 = 3600 * abs(cd11)
        pixscal2 = 3600 * abs(cd22)
        xas = pixscal1 * xdim
        yas = pixscal2 * ydim
        xam = xas / 60
        yam = yas / 60
        #print(xam,yam)
        #radius for query: sqrt2 = 1.414
        sizeam = 1.414 * (xam + yam) / 4
        print sizeam

    ras, decs, psfMag_u, psfMagErr_u, psfMag_g, psfMagErr_g, psfMag_r, psfMagErr_r, psfMag_i, psfMagErr_i, psfMag_z, psfMagErr_z = np.loadtxt(
        outcoords,
        usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
        unpack=True,
        delimiter=',',
        skiprows=2)
    probPSF = np.loadtxt(outcoords,
                         usecols=(12, ),
                         dtype=int,
                         unpack=True,
                         delimiter=',',
                         skiprows=2)
    # print ras, decs

    w = odi.WCS(hdu.header)

    with open(odi.coordspath + 'reproj_' + ota + '.' + img.base() + '.sdssxy',
              'w+') as fxy:
        j = 0
        # k=0
        for i, c in enumerate(ras):
            coords2 = [[ras[i], decs[i]]]
            pixcrd2 = w.wcs_world2pix(coords2, 1)
            if psfMag_g[i] < gmaglim and probPSF[i] == 1:
                if 100.0 <= pixcrd2[0][0] < xdim - 100.0 and 100.0 <= pixcrd2[
                        0][1] < ydim - 100.0:
                    # make an image cutout of the gap mask
                    x, y = int(round(pixcrd2[0][0])), int(round(pixcrd2[0][1]))
                    cutout = gapmask[y - 30:y + 30, x - 30:x + 30]
                    # print cutout.flatten()
                    # k+=1
                    # print k,cutout.astype(bool).any()
                    if not (cutout.astype(bool)).any():
                        # j+=1
                        # print pixcrd2[0][0], pixcrd2[0][1],x-30,x+30,y-30,y+30
                        # plt.imshow(cutout)
                        # plt.show()
                        print >> fxy, pixcrd2[0][0], pixcrd2[0][1], ras[
                            i], decs[i], psfMag_u[i], psfMagErr_u[i], psfMag_g[
                                i], psfMagErr_g[i], psfMag_r[i], psfMagErr_r[
                                    i], psfMag_i[i], psfMagErr_i[i], psfMag_z[
                                        i], psfMagErr_z[i]
        # print j
    hdulist.close()
Example #6
0
def sdss_coords_full(img, inst, gmaglim=19.):
    formats = ['csv', 'xml', 'html']

    astro_url = 'http://skyserver.sdss3.org/public/en/tools/search/x_sql.aspx'
    #public_url='http://skyserver.sdss.org/SkyserverWS/dr12/ImagingQuery/Cone?'
    public_url = 'http://skyserver.sdss.org/dr12/SkyserverWS/ImagingQuery/Cone?'

    default_url = public_url
    default_fmt = 'csv'

    image = img
    outcoords = img.nofits() + '.sdss'

    hdulist = odi.fits.open(image)
    hdu = odi.tan_header_fix(hdulist[0])
    data = hdu.data
    # hdu = hdulist[ota]

    xdim = hdu.header['NAXIS1']
    ydim = hdu.header['NAXIS2']

    if not os.path.isfile(outcoords):
        # and find the image center
        xc = xdim / 2.0
        yc = ydim / 2.0

        # get the CD matrix keywords
        cd11 = hdu.header['CD1_1']
        cd22 = hdu.header['CD2_2']
        # try to load cd12 and cd21, if they don't exist, set them to zero
        try:
            cd12 = hdu.header['CD1_2']
        except:
            cd12 = 0.0
        try:
            cd21 = hdu.header['CD2_1']
        except:
            cd21 = 0.0

        # print xdim, ydim, cd12, cd21

        # Parse the WCS keywords in the primary HDU
        w = odi.WCS(hdu.header)

        # Some pixel coordinates of interest.
        pixcrd = np.array([[xc, yc]], np.float_)

        # Convert pixel coordinates to world coordinates
        # The second argument is "origin" -- in this case we're declaring we
        # have 1-based (Fortran-like) coordinates.
        world = w.wcs_pix2world(pixcrd, 1)
        # print(world)
        rac = world[0][0]
        decc = world[0][1]
        # print xc, yc, rac, decc

        # get the biggest radius of the image in arcminutes
        pixscal1 = 3600 * abs(cd11)
        pixscal2 = 3600 * abs(cd22)
        xas = pixscal1 * xdim
        yas = pixscal2 * ydim
        xam = xas / 60
        yam = yas / 60
        #print(xam,yam)
        #radius for query: sqrt2 = 1.414
        sizeam = 1.414 * (xam + yam) / 4
        print sizeam

        #qry = "limit=5000&format=csv&imgparams=ra,dec,u,err_u,g,err_g,r,err_r,i,err_i,z,err_z,probPSF&specparams=none&ra="+repr(rac)+"&dec="+repr(decc)+"&radius="+repr(sizeam)+"&magType=psf"
        qry = "limit=10000&format=csv&imgparams=ra,dec,psfMag_u,psfMagErr_u,psfMag_g,psfMagErr_g,psfMag_r,psfMagErr_r,psfMag_i,psfMagErr_i,psfMag_z,psfMagErr_z,probPSF&specparams=none&ra=" + repr(
            rac) + "&dec=" + repr(decc) + "&radius=" + repr(
                sizeam) + "&magType=psf"

        #print 'with query\n-->', qry
        print 'fetching SDSS sources around', rac, decc, 'with radius', sizeam, 'arcmin'
        url = default_url
        fmt = default_fmt
        writefirst = 1
        verbose = 0

        ofp = open(outcoords, 'w+')
        if verbose:
            odi.write_header(ofp, '#', url, qry)
        file_ = odi.httpquery(qry, url, fmt)
        # Output line by line (in case it's big)
        line = file_.readline()
        if line.startswith("ERROR"):  # SQL Statement Error -> stderr
            ofp = sys.stderr
        if writefirst:
            ofp.write(string.rstrip(line) + os.linesep)
        line = file_.readline()
        while line:
            ofp.write(string.rstrip(line) + os.linesep)
            line = file_.readline()
        ofp.close()
    else:
        print 'SDSS sources already fetched!'

    ras, decs, psfMag_u, psfMagErr_u, psfMag_g, psfMagErr_g, psfMag_r, psfMagErr_r, psfMag_i, psfMagErr_i, psfMag_z, psfMagErr_z = np.loadtxt(
        outcoords,
        usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
        unpack=True,
        delimiter=',',
        skiprows=2)
    probPSF = np.loadtxt(outcoords,
                         usecols=(12, ),
                         dtype=int,
                         unpack=True,
                         delimiter=',',
                         skiprows=2)
    # print ras, decs

    w = odi.WCS(hdu.header)
    with open(img.nofits() + '.wcs.coo', 'w+') as f:
        with open(img.nofits() + '.sdssxy', 'w+') as fxy:
            for i, c in enumerate(ras):
                coords2 = [[ras[i], decs[i]]]
                pixcrd2 = w.wcs_world2pix(coords2, 1)
                if psfMag_g[i] < gmaglim and probPSF[
                        i] == 1 and 100.0 <= pixcrd2[0][
                            0] < xdim - 100.0 and 100.0 <= pixcrd2[0][
                                1] < ydim - 100.0:
                    r, d = odi.deg_to_sex(ras[i], decs[i])
                    x, y = int(round(pixcrd2[0][0])), int(round(pixcrd2[0][1]))
                    cutout = data[y - 30:y + 30, x - 30:x + 30]
                    # print cutout.flatten()
                    # k+=1
                    # print i,(cutout<-900).any()
                    if not (cutout < -900).any():
                        print >> f, r, d, psfMag_g[i]
                        print >> fxy, pixcrd2[0][0], pixcrd2[0][1], ras[
                            i], decs[i], psfMag_u[i], psfMagErr_u[i], psfMag_g[
                                i], psfMagErr_g[i], psfMag_r[i], psfMagErr_r[
                                    i], psfMag_i[i], psfMagErr_i[i], psfMag_z[
                                        i], psfMagErr_z[i]
    hdulist.close()
Example #7
0
def repoxy_offline(img, ota, gapmask, inst, gmaglim=19., source='sdss'):
    image = odi.reprojpath + 'reproj_' + ota + '.' + img.stem()
    hdulist = odi.fits.open(image)
    hdu = odi.tan_header_fix(hdulist[0])
    xdim = hdu.header['NAXIS1']
    ydim = hdu.header['NAXIS2']
    if source == 'sdss':
        outcoords = odi.sdsspath + 'offline_' + ota + '.' + img.base(
        ) + '.sdss'
        ras, decs, psfMag_u, psfMagErr_u, psfMag_g, psfMagErr_g, psfMag_r, psfMagErr_r, psfMag_i, psfMagErr_i, psfMag_z, psfMagErr_z = np.loadtxt(
            outcoords,
            usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
            unpack=True,
            delimiter=',',
            skiprows=1)
        outputxy = odi.coordspath + 'reproj_' + ota + '.' + img.base(
        ) + '.sdssxy'
    if source == 'twomass':
        outcoords = odi.twomasspath + 'offline_' + ota + '.' + img.base(
        ) + '.mass'
        outputxy = odi.coordspath + 'reproj_' + ota + '.' + img.base(
        ) + '.massxy'
        ras, decs = np.loadtxt(outcoords,
                               usecols=(2, 3),
                               unpack=True,
                               delimiter=',',
                               skiprows=1)
        # Just creating dummy variables so that the file formats remain the same for other functions
        psfMag_u = np.ones(len(ras))
        psfMagErr_u = np.ones(len(ras))
        psfMag_g = np.ones(len(ras))
        psfMagErr_g = np.ones(len(ras))
        psfMag_r = np.ones(len(ras))
        psfMagErr_r = np.ones(len(ras))
        psfMag_i = np.ones(len(ras))
        psfMagErr_i = np.ones(len(ras))
        psfMag_z = np.ones(len(ras))
        psfMagErr_z = np.ones(len(ras))
    if source == 'gaia':
        outcoords = odi.gaiapath + 'offline_' + ota + '.' + img.base(
        ) + '.gaia'
        outputxy = odi.coordspath + 'reproj_' + ota + '.' + img.base(
        ) + '.gaiaxy'
        ras, decs = np.loadtxt(outcoords,
                               usecols=(0, 1),
                               unpack=True,
                               delimiter=',',
                               skiprows=1)
        # Just creating dummy variables so that the file formats remain the same
        # for other functions
        psfMag_u = np.ones(len(ras))
        psfMagErr_u = np.ones(len(ras))
        psfMag_g = np.ones(len(ras))
        psfMagErr_g = np.ones(len(ras))
        psfMag_r = np.ones(len(ras))
        psfMagErr_r = np.ones(len(ras))
        psfMag_i = np.ones(len(ras))
        psfMagErr_i = np.ones(len(ras))
        psfMag_z = np.ones(len(ras))
        psfMagErr_z = np.ones(len(ras))
    tqdm.write('Using Ra and Dec from {:s} for reproject'.format(outcoords))
    w = odi.WCS(hdu.header)
    with open(outputxy, 'w+') as fxy:
        for i, c in enumerate(ras):
            coords2 = [[ras[i], decs[i]]]
            pixcrd2 = w.wcs_world2pix(coords2, 1)
            if psfMag_g[i] < gmaglim:
                if 100.0 <= pixcrd2[0][0] < xdim - 100.0 and 100.0 <= pixcrd2[
                        0][1] < ydim - 100.0:
                    # make an image cutout of the gap mask
                    x, y = int(round(pixcrd2[0][0])), int(round(pixcrd2[0][1]))
                    cutout = gapmask[y - 30:y + 30, x - 30:x + 30]
                    if not (cutout.astype(bool)).any():
                        print >> fxy, pixcrd2[0][0], pixcrd2[0][1], ras[
                            i], decs[i], psfMag_u[i], psfMagErr_u[i], psfMag_g[
                                i], psfMagErr_g[i], psfMag_r[i], psfMagErr_r[
                                    i], psfMag_i[i], psfMagErr_i[i], psfMag_z[
                                        i], psfMagErr_z[i]

    hdulist.close()
Example #8
0
def get_sdss_coords(img, ota, inst, output='test.sdss'):
    formats = ['csv', 'xml', 'html']

    astro_url = 'http://skyserver.sdss3.org/public/en/tools/search/x_sql.aspx'
    public_url = 'http://skyserver.sdss.org/dr12/SkyserverWS/ImagingQuery/Cone?'

    default_url = public_url
    default_fmt = 'csv'

    hdulist = odi.fits.open(img.f)
    hdu = odi.tan_header_fix(hdulist[ota])

    xdim = hdu.header['NAXIS1']
    ydim = hdu.header['NAXIS2']

    if not os.path.isfile(output):
        # and find the image center
        xc = xdim / 2.0
        yc = ydim / 2.0

        # get the CD matrix keywords
        cd11 = hdu.header['CD1_1']
        cd22 = hdu.header['CD2_2']
        # try to load cd12 and cd21, if they don't exist, set them to zero
        try:
            cd12 = hdu.header['CD1_2']
        except:
            cd12 = 0.0
        try:
            cd21 = hdu.header['CD2_1']
        except:
            cd21 = 0.0

        # print xdim, ydim, cd12, cd21

        # Parse the WCS keywords in the primary HDU
        w = odi.WCS(hdu.header)

        # Some pixel coordinates of interest.
        pixcrd = np.array([[xc, yc]], np.float_)

        # Convert pixel coordinates to world coordinates
        # The second argument is "origin" -- in this case we're declaring we
        # have 1-based (Fortran-like) coordinates.
        world = w.wcs_pix2world(pixcrd, 1)
        # print(world)
        rac = world[0][0]
        decc = world[0][1]
        # print xc, yc, rac, decc

        # get the biggest radius of the image in arcminutes
        pixscal1 = 3600 * abs(cd11)
        pixscal2 = 3600 * abs(cd22)
        xas = pixscal1 * xdim
        yas = pixscal2 * ydim
        xam = xas / 60
        yam = yas / 60
        #print(xam,yam)
        #radius for query: sqrt2 = 1.414
        sizeam = 1.414 * (xam + yam) / 4
        print sizeam

        #qry = "limit=5000&format=csv&imgparams=ra,dec,u,err_u,g,err_g,r,err_r,i,err_i,z,err_z,probPSF&specparams=none&ra="+repr(rac)+"&dec="+repr(decc)+"&radius="+repr(sizeam)+"&magType=psf"
        qry = "limit=5000&format=csv&imgparams=ra,dec,psfMag_u,psfMagErr_u,psfMag_g,psfMagErr_g,psfMag_r,psfMagErr_r,psfMag_i,psfMagErr_i,psfMag_z,psfMagErr_z,probPSF&specparams=none&ra=" + repr(
            rac) + "&dec=" + repr(decc) + "&radius=" + repr(
                sizeam) + "&magType=psf"

        #print 'with query\n-->', qry
        print 'fetching SDSS sources around', rac, decc, 'with radius', sizeam, 'arcmin'
        url = default_url
        fmt = default_fmt
        writefirst = 1
        verbose = 0

        ofp = open(output, 'w+')
        if verbose:
            odi.write_header(ofp, '#', url, qry)
        file_ = odi.httpquery(qry, url, fmt)
        # Output line by line (in case it's big)
        line = file_.readline()
        if line.startswith("ERROR"):  # SQL Statement Error -> stderr
            ofp = sys.stderr
        if writefirst:
            ofp.write(string.rstrip(line) + os.linesep)
        line = file_.readline()
        while line:
            ofp.write(string.rstrip(line) + os.linesep)
            line = file_.readline()
        ofp.close()
    else:
        print 'SDSS sources already fetched!'
    return xdim, ydim
    hdulist.close()
Example #9
0
def refetch_sdss_coords(img,
                        ota,
                        gapmask,
                        inst,
                        gmaglim=19.,
                        offline=False,
                        source='sdss'):

    image = odi.reprojpath + 'reproj_' + ota + '.' + img.stem()
    outcoords = odi.coordspath + 'reproj_' + ota + '.' + img.base() + '.sdss'
    hdulist = odi.fits.open(image)

    hdu = odi.tan_header_fix(hdulist[0])
    xdim = hdu.header['NAXIS1']
    ydim = hdu.header['NAXIS2']

    if offline == False:
        formats = ['csv', 'xml', 'html']
        astro_url = 'http://skyserver.sdss3.org/public/en/tools/search/x_sql.aspx'
        public_url = 'http://skyserver.sdss.org/dr12/SkyserverWS/ImagingQuery/Cone?'
        default_url = public_url
        default_fmt = 'csv'
        if not os.path.isfile(outcoords):
            # and find the image center
            xc = xdim / 2.0
            yc = ydim / 2.0

            # get the CD matrix keywords
            cd11 = hdu.header['CD1_1']
            cd22 = hdu.header['CD2_2']
            # try to load cd12 and cd21, if they don't exist, set them to zero
            try:
                cd12 = hdu.header['CD1_2']
            except:
                cd12 = 0.0
            try:
                cd21 = hdu.header['CD2_1']
            except:
                cd21 = 0.0

            w = odi.WCS(hdu.header)

            # Some pixel coordinates of interest.
            pixcrd = np.array([[xc, yc]], np.float_)

            # Convert pixel coordinates to world coordinates
            # The second argument is "origin" -- in this case we're declaring we
            # have 1-based (Fortran-like) coordinates.
            world = w.wcs_pix2world(pixcrd, 1)
            # print(world)
            rac = world[0][0]
            decc = world[0][1]
            # print xc, yc, rac, decc

            # get the biggest radius of the image in arcminutes
            pixscal1 = 3600 * abs(cd11)
            pixscal2 = 3600 * abs(cd22)
            xas = pixscal1 * xdim
            yas = pixscal2 * ydim
            xam = xas / 60
            yam = yas / 60
            #print(xam,yam)
            #radius for query: sqrt2 = 1.414
            sizeam = 1.414 * (xam + yam) / 4
            print sizeam

            #qry = "limit=5000&format=csv&imgparams=ra,dec,u,err_u,g,err_g,r,err_r,i,err_i,z,err_z,probPSF&specparams=none&ra="+repr(rac)+"&dec="+repr(decc)+"&radius="+repr(sizeam)+"&magType=psf"
            qry = "limit=5000&format=csv&imgparams=ra,dec,psfMag_u,psfMagErr_u,psfMag_g,psfMagErr_g,psfMag_r,psfMagErr_r,psfMag_i,psfMagErr_i,psfMag_z,psfMagErr_z,probPSF&specparams=none&ra=" + repr(
                rac) + "&dec=" + repr(decc) + "&radius=" + repr(
                    sizeam) + "&magType=psf"

            #print 'with query\n-->', qry
            print 'fetching SDSS sources around', rac, decc, 'with radius', sizeam, 'arcmin'
            url = default_url
            fmt = default_fmt
            writefirst = 1
            verbose = 0

            ofp = open(outcoords, 'w+')
            if verbose:
                odi.write_header(ofp, '#', url, qry)
            file_ = odi.httpquery(qry, url, fmt)
            # Output line by line (in case it's big)
            line = file_.readline()
            if line.startswith("ERROR"):  # SQL Statement Error -> stderr
                ofp = sys.stderr
            if writefirst:
                ofp.write(string.rstrip(line) + os.linesep)
            line = file_.readline()
            while line:
                ofp.write(string.rstrip(line) + os.linesep)
                line = file_.readline()
            ofp.close()
        else:
            print 'SDSS sources already fetched!'

        ras, decs, psfMag_u, psfMagErr_u, psfMag_g, psfMagErr_g, psfMag_r, psfMagErr_r, psfMag_i, psfMagErr_i, psfMag_z, psfMagErr_z = np.loadtxt(
            outcoords,
            usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
            unpack=True,
            delimiter=',',
            skiprows=2)
        probPSF = np.loadtxt(outcoords,
                             usecols=(12, ),
                             dtype=int,
                             unpack=True,
                             delimiter=',',
                             skiprows=2)
        w = odi.WCS(hdu.header)
        with open(
                odi.coordspath + 'reproj_' + ota + '.' + img.base() +
                '.sdssxy', 'w+') as fxy:
            j = 0
            # k=0
            for i, c in enumerate(ras):
                coords2 = [[ras[i], decs[i]]]
                pixcrd2 = w.wcs_world2pix(coords2, 1)
                if psfMag_g[i] < gmaglim and probPSF[i] == 1:
                    if 100.0 <= pixcrd2[0][
                            0] < xdim - 100.0 and 100.0 <= pixcrd2[0][
                                1] < ydim - 100.0:
                        # make an image cutout of the gap mask
                        x, y = int(round(pixcrd2[0][0])), int(
                            round(pixcrd2[0][1]))
                        cutout = gapmask[y - 30:y + 30, x - 30:x + 30]
                        # print cutout.flatten()
                        # k+=1
                        # print k,cutout.astype(bool).any()
                        if not (cutout.astype(bool)).any():
                            print >> fxy, pixcrd2[0][0], pixcrd2[0][1], ras[
                                i], decs[i], psfMag_u[i], psfMagErr_u[
                                    i], psfMag_g[i], psfMagErr_g[i], psfMag_r[
                                        i], psfMagErr_r[i], psfMag_i[
                                            i], psfMagErr_i[i], psfMag_z[
                                                i], psfMagErr_z[i]

    if offline == True:
        if source == 'sdss':
            outcoords = odi.sdsspath + 'offline_' + ota + '.' + img.base(
            ) + '.sdss'
            ras, decs, psfMag_u, psfMagErr_u, psfMag_g, psfMagErr_g, psfMag_r, psfMagErr_r, psfMag_i, psfMagErr_i, psfMag_z, psfMagErr_z = np.loadtxt(
                outcoords,
                usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
                unpack=True,
                delimiter=',',
                skiprows=1)
        if source == 'twomass':
            outcoords = odi.twomasspath + 'offline_' + ota + '.' + img.base(
            ) + '.mass'
            ras, decs = np.loadtxt(outcoords,
                                   usecols=(2, 3),
                                   unpack=True,
                                   delimiter=',',
                                   skiprows=1)
            # Just creating dummy variables so that the file formats remain the same for other functions
            psfMag_u = np.ones(len(ras))
            psfMagErr_u = np.ones(len(ras))
            psfMag_g = np.ones(len(ras))
            psfMagErr_g = np.ones(len(ras))
            psfMag_r = np.ones(len(ras))
            psfMagErr_r = np.ones(len(ras))
            psfMag_i = np.ones(len(ras))
            psfMagErr_i = np.ones(len(ras))
            psfMag_z = np.ones(len(ras))
            psfMagErr_z = np.ones(len(ras))
        if source == 'gaia':
            outcoords = odi.gaiapath + 'offline_' + ota + '.' + img.base(
            ) + '.gaia'
            ras, decs = np.loadtxt(outcoords,
                                   usecols=(0, 1),
                                   unpack=True,
                                   delimiter=',',
                                   skiprows=1)
            # Just creating dummy variables so that the file formats remain the same
            # for other functions
            psfMag_u = np.ones(len(ras))
            psfMagErr_u = np.ones(len(ras))
            psfMag_g = np.ones(len(ras))
            psfMagErr_g = np.ones(len(ras))
            psfMag_r = np.ones(len(ras))
            psfMagErr_r = np.ones(len(ras))
            psfMag_i = np.ones(len(ras))
            psfMagErr_i = np.ones(len(ras))
            psfMag_z = np.ones(len(ras))
            psfMagErr_z = np.ones(len(ras))
        tqdm.write(
            'Using Ra and Dec from {:s} for reproject'.format(outcoords))
        w = odi.WCS(hdu.header)
        with open(
                odi.coordspath + 'reproj_' + ota + '.' + img.base() +
                '.sdssxy', 'w+') as fxy:
            for i, c in enumerate(ras):
                coords2 = [[ras[i], decs[i]]]
                pixcrd2 = w.wcs_world2pix(coords2, 1)
                if psfMag_g[i] < gmaglim:
                    if 100.0 <= pixcrd2[0][
                            0] < xdim - 100.0 and 100.0 <= pixcrd2[0][
                                1] < ydim - 100.0:
                        # make an image cutout of the gap mask
                        x, y = int(round(pixcrd2[0][0])), int(
                            round(pixcrd2[0][1]))
                        cutout = gapmask[y - 30:y + 30, x - 30:x + 30]
                        if not (cutout.astype(bool)).any():
                            print >> fxy, pixcrd2[0][0], pixcrd2[0][1], ras[
                                i], decs[i], psfMag_u[i], psfMagErr_u[
                                    i], psfMag_g[i], psfMagErr_g[i], psfMag_r[
                                        i], psfMagErr_r[i], psfMag_i[
                                            i], psfMagErr_i[i], psfMag_z[
                                                i], psfMagErr_z[i]

    hdulist.close()
Example #10
0
def list_wcs_coords(img, ota, gapmask, inst,output='radec.coo', gmaglim=20., stars_only=True, offline = False, source = 'sdss'):
    """
    Create the files needed to fix the WCS solution on a given ota. This
    function will create lists of SDSS, 2MASS, or Gaia sources depending on the
    options selected by the user. If this function is run in the ``offline``
    mode, the source catalogs will be taken from the files produced by
    :py:func:`offlinecats`

    Parameters
    ----------
    img : str
        Name of image
    ota : str
        Name of OTA
    gapmask : numpy array
        A numpy array of the gap location on the ota. This can be produced by
        the function :py:func:`get_gaps.get_gaps`. The gap mask is used to
        filter out stars that fall in or near gaps on the ota.
    int : str
        Version of ODI used, ``podi`` or ``5odi``
    output : str
        Desired name of the output catalog
    gmaglim : float
        Magnitude limit in the g band for sources that will be included in the
        catalogs. This might need to be adjusted according to your data. If it
        is too bright, there might not be enough sources to produces a good
        WCS solution.
    stars_only : bool
        When using SDSS sources this only includes sources flagged as stars
    offline : bool
        When ``True`` this function will use the catalogs produced by
        :py:func:`offlinecats`. If ``False`` this function will query the
        online ``SDSS`` catalog for sources.
    source : str
        Name of desired source catalog. Must be either ``sdss``,``twomass``, or
        ``gaia``.

    Note
    ----
    This functions produces three files for each ota in the ``coords``
    directory with the following naming scheme:

    1. ``img.nofits()+'.'+ota+'.radec.coo'``
    2. ``img.nofits()+'.'+ota+'.radec.coo.px'``
    3. ``img.nofits()+'.'+ota+'.sdssxy'``
    """

    if offline == False:
        xdim, ydim = odi.get_sdss_coords(img, ota, inst,output=odi.coordspath+img.nofits()+'.'+ota+'.sdss')
        ras,decs,psfMag_u,psfMagErr_u,psfMag_g,psfMagErr_g,psfMag_r,psfMagErr_r,psfMag_i,psfMagErr_i,psfMag_z,psfMagErr_z = np.loadtxt(odi.coordspath+img.nofits()+'.'+ota+'.sdss',usecols=(0,1,2,3,4,5,6,7,8,9,10,11), unpack=True, delimiter=',', skiprows=2)
        probPSF = np.loadtxt(odi.coordspath+img.nofits()+'.'+ota+'.sdss', usecols=(12,), dtype=int, unpack=True, delimiter=',', skiprows=2)
        coords2 = zip(ras[np.where((psfMag_g<gmaglim) & (probPSF==1))],decs[np.where((psfMag_g<gmaglim) & (probPSF==1))])
    if offline == True and source == 'sdss':
        sdss_cat = odi.sdsspath+'offline_'+ota+'.'+img.base()+'.sdss'
        print 'Using Ra and Dec from:', sdss_cat,'for fixwcs'
        ras,decs,psfMag_u,psfMagErr_u,psfMag_g,psfMagErr_g,psfMag_r,psfMagErr_r,psfMag_i,psfMagErr_i,psfMag_z,psfMagErr_z = np.loadtxt(sdss_cat,usecols=(0,1,2,3,4,5,6,7,8,9,10,11), unpack=True, delimiter=',', skiprows=1)
        coords2 = zip(ras[np.where(psfMag_g<gmaglim)],decs[np.where(psfMag_g<gmaglim)])
    if offline == True and source == 'twomass':
        twomass_cat = odi.twomasspath+'offline_'+ota+'.'+img.base()+'.mass'
        ras,decs = np.loadtxt(twomass_cat,usecols=(2,3), unpack=True, delimiter=',', skiprows=1)
        # Just creating dummy variables so that the file formats remain the same for other functions
        psfMag_u       = np.ones(len(ras))
        psfMagErr_u    = np.ones(len(ras))
        psfMag_g       = np.ones(len(ras))
        psfMagErr_g    = np.ones(len(ras))
        psfMag_r       = np.ones(len(ras))
        psfMagErr_r    = np.ones(len(ras))
        psfMag_i       = np.ones(len(ras))
        psfMagErr_i    = np.ones(len(ras))
        psfMag_z       = np.ones(len(ras))
        psfMagErr_z    = np.ones(len(ras))
        coords2 = zip(ras,decs)
    if source == 'gaia':
        gaia_cat = odi.gaiapath+'offline_'+ota+'.'+img.base()+'.gaia'
        ras,decs = np.loadtxt(gaia_cat,usecols=(0,1), unpack=True, delimiter=',', skiprows=1)
        # Just creating dummy variables so that the file formats remain the same
        # for other functions
        psfMag_u       = np.ones(len(ras))
        psfMagErr_u    = np.ones(len(ras))
        psfMag_g       = np.ones(len(ras))
        psfMagErr_g    = np.ones(len(ras))
        psfMag_r       = np.ones(len(ras))
        psfMagErr_r    = np.ones(len(ras))
        psfMag_i       = np.ones(len(ras))
        psfMagErr_i    = np.ones(len(ras))
        psfMag_z       = np.ones(len(ras))
        psfMagErr_z    = np.ones(len(ras))
        coords2 = zip(ras,decs)

    hdulist = odi.fits.open(img.f)
    hdu = odi.tan_header_fix(hdulist[ota])

    if offline == True:
        xdim = hdu.header['NAXIS1']
        ydim = hdu.header['NAXIS2']

    w = odi.WCS(hdu.header)
    pixcrd2 = w.wcs_world2pix(coords2, 1)
    pixid = []
    with open(odi.coordspath+output,'w+') as f:
        with open(odi.coordspath+output+'.pix', 'w+') as fp:
            with open(odi.coordspath+img.nofits()+'.'+ota+'.sdssxy', 'w+') as fxy:
                for i,c in enumerate(coords2):
                    if  20.0 <= pixcrd2[i,0] < xdim-100.0 and 20.0 <= pixcrd2[i,1] < ydim-100.0:
                        # make an image cutout of the gap mask
                        x, y = int(round(pixcrd2[i,0])), int(round(pixcrd2[i,1]))
                        cutout = gapmask[y-30:y+30,x-30:x+30]
                        # print cutout
                        if not (cutout.astype(bool)).any():
                            pixid.append(i)
                            r, d = odi.deg_to_sex(c[0], c[1])
                            print >> f, r, d, psfMag_g[i]
                            print >> fp, pixcrd2[i,0], pixcrd2[i,1], i, 'm'
                            print >> fxy, pixcrd2[i,0], pixcrd2[i,1], ras[i],decs[i],psfMag_u[i],psfMagErr_u[i],psfMag_g[i],psfMagErr_g[i],psfMag_r[i],psfMagErr_r[i],psfMag_i[i],psfMagErr_i[i],psfMag_z[i],psfMagErr_z[i]

    pixid = np.array(pixid)
    pixcrd3 = pixcrd2[pixid]
    hdulist.close()
    return pixcrd3