def cal_relative_mutual_strength(self, n_neighbors=3, mean=True): r""" Relative strength for both axes of mutual information matrix. Basically, is the mean of normalized maximum mutual information per code, and per factor. Return: a scalar - higher is better """ matrix = self.create_mutualinfo_matrix(n_neighbors=n_neighbors) return dict(rms=metrics.relative_strength(matrix))
def cal_relative_disentanglement_strength(self, method='spearman', mean=True): r""" Relative strength for both axes of correlation matrix. Basically, is the mean of normalized maximum correlation per code, and per factor. Arguments: method : {'spearman', 'pearson', 'lasso', 'avg'} spearman - rank or monotonic correlation pearson - linear correlation lasso - lasso regression Return: a scalar - higher is better """ corr_matrix = self.create_correlation_matrix(mean=mean, method=method) return dict(rds=metrics.relative_strength(corr_matrix))