Example #1
0
 def test_computational_graph3(self):
     # validate the number of updates found by ComputationGraph
     X = K.placeholder(shape=(None, 28, 28, 3))
     f = N.Sequence([
         N.Conv(32, 3, pad='same', activation=K.linear),
         N.BatchNorm(activation=K.relu),
         N.Flatten(outdim=2),
         N.Dense(16),
         N.BatchNorm(),
         N.Dense(10)
     ])
     K.set_training(True)
     y_train = f(X)
     K.set_training(False)
     y_score = f(X)
     self.assertTrue(
         K.get_shape(y_train) == K.get_shape(y_score)
         and K.get_shape(y_score) == (None, 10))
     cc_train = K.ComputationGraph(y_train)
     cc_score = K.ComputationGraph(y_score)
     self.assertTrue(len(cc_score.updates) == 0)
     self.assertTrue(len(cc_train.updates) == 4)
     # create real function
     fn_train = K.function(X, y_train)
     fn_score = K.function(X, y_score)
     shape1 = fn_train(np.random.rand(12, 28, 28, 3)).shape
     shape2 = fn_score(np.random.rand(12, 28, 28, 3)).shape
     self.assertTrue(shape1 == shape2 and shape1 == (12, 10))
Example #2
0
def gender(X, f, **kwargs):
    nb_gender = kwargs.get('nb_gender', 4)
    if f is None:
        f = N.Sequence([
            N.Dimshuffle(pattern=(0, 1, 2, 'x')),
            N.Conv(num_filters=32,
                   filter_size=3,
                   strides=1,
                   b_init=None,
                   pad='valid'),
            N.BatchNorm(activation=K.relu),
            N.Pool(pool_size=2, mode='avg'),
            N.Conv(num_filters=64,
                   filter_size=3,
                   strides=1,
                   b_init=None,
                   pad='valid'),
            N.BatchNorm(activation=K.relu),
            N.Pool(pool_size=2, mode='avg'),
            N.Flatten(outdim=3),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=(0, 1)),
            N.AutoRNN(num_units=128,
                      rnn_mode='gru',
                      num_layers=2,
                      input_mode='linear',
                      direction_mode='unidirectional'),
            N.Flatten(outdim=2),
            N.Dense(num_units=nb_gender, activation=K.softmax)
        ],
                       debug=True)
    return f(X), f
Example #3
0
def cnn(X, y):
  nb_classes = y.shape.as_list()[-1]
  with N.args_scope(['Conv', dict(b_init=None, activation=K.linear)],
                    ['BatchNorm', dict(activation=K.relu)]):
    f = N.Sequence([
        N.Dimshuffle(pattern=(0, 2, 3, 1)),
        N.Conv(32, (3, 3), pad='same', stride=(1, 1)),
        N.BatchNorm(),
        N.Conv(32, (3, 3), pad='same', stride=(1, 1),
               b_init=0, activation=K.relu),
        N.Pool(pool_size=(2, 2), strides=None, mode='max'),
        N.Dropout(level=0.25),
        #
        N.Conv(64, (3, 3), pad='same', stride=(1, 1)),
        N.BatchNorm(),
        N.Conv(64, (3, 3), pad='same', stride=(1, 1),
               b_init=0., activation=K.relu),
        N.Pool(pool_size=(2, 2), strides=None, mode='max'),
        N.Dropout(level=0.25),
        #
        N.Flatten(outdim=2),
        N.Dense(512, activation=K.relu),
        N.Dropout(level=0.5),
        N.Dense(nb_classes, activation=K.linear)
    ], debug=1)
  logit = f(X)
  prob = tf.nn.softmax(logit)
  return {'logit': logit, 'prob': prob}
Example #4
0
    def test_batch_norm(self):
        K.set_training(True)
        x = K.placeholder((None, 8, 12))
        y = N.BatchNorm()(x)
        f = K.function(x, y)
        z = f(np.random.rand(25, 8, 12))
        self.assertEquals(z.shape, (25, 8, 12))

        # ====== Not training ====== #
        K.set_training(False)
        x = K.placeholder((None, 8, 12))
        y = N.BatchNorm()(x)
        f = K.function(x, y)
        z = f(np.random.rand(25, 8, 12))
        self.assertEquals(z.shape, (25, 8, 12))
def dense_creator():
    net = N.Sequence([
        N.Dense(int(args.hdim),
                b_init=0 if args.no_batchnorm else None,
                activation=K.relu if args.no_batchnorm else K.linear),
        None if args.no_batchnorm else N.BatchNorm(activation=K.relu)
    ],
                     debug=True,
                     name="DenseBatchNorm%d" % index[0])
    index[0] += 1
    return net
Example #6
0
 def test_helper_ops_variables(self):
     X = K.placeholder(shape=(10, 20))
     f = N.Sequence([
         N.Dense(12),
         N.Dense(8),
         N.BatchNorm(),
         N.Dense(25, W_init=tf.zeros(shape=(8, 25)))
     ])
     y = f(X)
     self.assertEqual(y.shape.as_list(), [10, 25])
     self.assertEqual(len(f.variables), 10)
     self.assertEqual(len(f.parameters), 7)
     self.assertEqual(len(f.trainable_variables), 9)
Example #7
0
 def test_slice_ops(self):
     X = K.placeholder(shape=(None, 28, 28, 28, 3))
     f = N.Sequence([
         N.Conv(32, 3, pad='same', activation=K.linear),
         N.BatchNorm(activation=tf.nn.relu),
         N.Flatten(outdim=4)[:, 8:12, 18:25, 13:],
     ])
     y = f(X)
     fn = K.function(X, y)
     self.assertTrue(
         fn(np.random.rand(12, 28, 28, 28, 3)).shape[1:] == tuple(
             y.shape.as_list()[1:]))
     self.assertEqual(y.shape.as_list()[1:], [4, 7, 883])
Example #8
0
def ladder1(X, y, states, **kwargs):
    noise = kwargs.get('noise', 0.3)
    # hyperparameters that denote the importance of each layer
    denoising_cost = [1000.0, 10.0, 0.10, 0.10, 0.10]

    if states is None:
        #
        f_encoder = N.Sequence([
            N.Flatten(outdim=2),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=10, activation=K.softmax),
        ],
                               all_layers=True,
                               debug=True,
                               name='Encoder')
        #
        f_decoder = N.Sequence([
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Reshape(shape=(-1, 28, 28)),
        ],
                               all_layers=True,
                               debug=True,
                               name='Decoder')
    else:
        f_encoder, f_decoder = states
    y_encoder_clean = f_encoder(X, noise=-1)[2::2]
    y_encoder_corrp = f_encoder(X, noise=1)[2::2]
    print(len(y_encoder_clean), len(y_encoder_corrp))
    exit()
    return (None, None), [f_encoder, f_decoder]
Example #9
0
X = inputs[0]
y = inputs[1]
print("Inputs:", ctext(inputs, 'cyan'))
# ====== create the networks ====== #
with N.args_scope(
    ['TimeDelayedConv',
     dict(time_pool='none', activation=K.relu)],
    ['Dense', dict(activation=K.linear, b_init=None)]):
    f = N.Sequence([
        N.Dropout(level=0.3),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(
            n_new_features=512, n_time_context=7, name="LatentTDNN"),
        N.Dense(512),
        N.BatchNorm(activation=K.relu),
        N.Dense(1500),
        N.BatchNorm(activation=K.relu),
        N.StatsPool(axes=1, output_mode='concat'),
        N.Flatten(outdim=2, name="StatsPooling"),
        N.Dense(512, name="LatentDense"),
        N.BatchNorm(activation=K.relu),
        N.Dense(512),
        N.BatchNorm(activation=K.relu),
        N.Dense(num_units=n_classes,
                activation=K.linear,
                b_init=init_ops.constant_initializer(0))
    ],
                   debug=1)
# ====== create outputs ====== #
y_logit = f(X)
Example #10
0
USE_MNIST_DATA = True if 'mnist' in arg['ds'].lower() else False

if USE_MNIST_DATA:
    ds = fuel.load_mnist()
else:
    ds = fuel.load_cifar10()

X = K.placeholder(shape=(None, ) + ds['X_train'].shape[1:], name='X')
y = K.placeholder(shape=(None, ), name='y', dtype='int32')

# ===========================================================================
# Build network
# ===========================================================================
ops = N.Sequence([
    N.Dimshuffle((0, 1, 2, 'x')) if USE_MNIST_DATA else None,
    N.BatchNorm(axes='auto'),
    N.Conv(32, (3, 3), strides=(1, 1), pad='same', activation=K.relu),
    N.Pool(pool_size=(2, 2), strides=None),
    N.Conv(64, (3, 3), strides=(1, 1), pad='same', activation=K.relu),
    N.Pool(pool_size=(2, 2), strides=None),
    N.Flatten(outdim=2),
    N.Dense(256, activation=K.relu),
    N.Dense(10, activation=K.softmax)
],
                 debug=True)
ops = cPickle.loads(cPickle.dumps(ops))  # test if the ops is pickle-able

K.set_training(True)
y_pred_train = ops(X)
K.set_training(False)
y_pred_score = ops(X)
Example #11
0
  x_vec = N.deserialize(path=all_models[SCORE_SYSTEM_ID],
                        force_restore_vars=True)
else:
  with N.args_scope(
      ['TimeDelayedConv', dict(time_pool='none', activation=K.relu)],
      ['Dense', dict(activation=K.linear, b_init=None)],
      ['BatchNorm', dict(activation=K.relu)]
  ):
    x_vec = N.Sequence([
        N.Dropout(level=0.3),

        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(n_new_features=512, n_time_context=7),

        N.Dense(512), N.BatchNorm(),
        N.Dense(1500), N.BatchNorm(),

        N.StatsPool(axes=1, output_mode='concat'),
        N.Flatten(outdim=2),

        N.Dense(512, name="LatentOutput"), N.BatchNorm(),
        N.Dense(512), N.BatchNorm(),

        N.Dense(n_speakers, activation=K.linear,
                b_init=init_ops.constant_initializer(value=0))
    ], debug=1, name='XNetwork')
# ====== create outputs ====== #
y_logit = x_vec(X)
y_proba = tf.nn.softmax(y_logit)
z = K.ComputationGraph(y_proba).get(roles=N.Dense, scope='LatentOutput',
Example #12
0
def convolutional_vae(X, saved_states, **kwargs):
    """ convolutional_vae

    Return
    ------
    [y_encoder, y_decoder]

    States
    ------
    [f_inference (encoder), f_generative (decoder)]

    """
    n = kwargs.get('n', 10)
    batch_size = K.get_shape(X)[0]
    if batch_size is None:
        raise ValueError(
            "You must specify batch_size dimension for the input placeholder.")
    # ====== init ====== #
    if saved_states is None:
        # Encoder
        f_inference = N.Sequence([
            N.Reshape(shape=(-1, 28, 28, 1)),
            N.Conv(num_filters=32,
                   filter_size=3,
                   strides=1,
                   pad='valid',
                   b_init=init_ops.constant_initializer(0.),
                   activation=K.elu),
            N.Conv(num_filters=64,
                   filter_size=5,
                   strides=2,
                   pad='same',
                   b_init=init_ops.constant_initializer(0.),
                   activation=K.elu),
            N.Dropout(level=0.1),
            N.Flatten(outdim=2),
            N.Dense(num_units=n * 2, b_init=None),
            N.BatchNorm(axes=0)
        ],
                                 debug=True,
                                 name='Encoder')
        # Decoder
        f_generative = N.Sequence([
            N.Dimshuffle(pattern=(0, 'x', 'x', 1)),
            N.TransposeConv(num_filters=64,
                            filter_size=3,
                            strides=1,
                            pad='valid',
                            b_init=init_ops.constant_initializer(0.),
                            activation=K.elu),
            N.TransposeConv(num_filters=32,
                            filter_size=5,
                            strides=2,
                            pad='same',
                            b_init=init_ops.constant_initializer(0.),
                            activation=K.elu),
            N.TransposeConv(num_filters=1,
                            filter_size=13,
                            strides=3,
                            pad='valid',
                            b_init=None),
            N.BatchNorm(activation=K.linear),
            N.Flatten(outdim=3)
        ],
                                  debug=True,
                                  name="Decoder")
    else:
        f_inference, f_generative = saved_states
    # ====== Perfrom ====== #
    # Encoder
    y_encoder = f_inference(K.cast(X, 'float32'))
    mu = y_encoder[:, :n]
    sigma = K.softplus(y_encoder[:, n:])
    qz = Normal(mu=mu, sigma=sigma, name='Normal_qz')
    # Decoder
    z = Normal(mu=K.zeros(shape=(batch_size, n)),
               sigma=K.ones(shape=(batch_size, n)),
               name="Normal_pz")
    logits = f_generative(z)
    X_reconstruct = Bernoulli(logits=logits)
    # inference
    params = f_inference.parameters + f_generative.parameters
    inference = ed.KLqp(latent_vars={z: qz}, data={X_reconstruct: X})
    # ====== get cost for training ====== #
    # Bind p(x, z) and q(z | x) to the same placeholder for x.
    if K.is_training():
        import tensorflow as tf
        inference.initialize()
        if True:
            optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0)
            updates = optimizer.apply_gradients(
                optimizer.compute_gradients(inference.loss, var_list=params))
            init = tf.global_variables_initializer()
            init.run()
            f_train = K.function(X, inference.loss, updates)
        else:
            optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0)
            inference.initialize(optimizer=optimizer, var_list=params)
            init = tf.global_variables_initializer()
            init.run()
            f_train = lambda x: inference.update(feed_dict={X: x})['loss']
    samples = K.sigmoid(logits)
    return (samples, z, qz), (f_inference, f_generative)
Example #13
0
test.set_recipes(recipes)
# ===========================================================================
# Create model
# ===========================================================================
inputs = [
    K.placeholder(shape=(None, ) + shape[1:],
                  dtype='float32',
                  name='input%d' % i) for i, shape in enumerate(train.shape)
]
print("Inputs:", ctext(inputs, 'cyan'))
# ====== create the network ====== #
f_encoder = N.Sequence([
    N.Dimshuffle(pattern=(0, 1, 2, 'x')),
    N.Conv(
        num_filters=32, filter_size=(7, 7), b_init=None, activation=K.linear),
    N.BatchNorm(),
    N.Pool(pool_size=(3, 2), strides=2),
],
                       debug=True,
                       name='Encoder')
f_latent = N.Sequence([
    N.Flatten(outdim=3),
    N.CudnnRNN(
        num_units=128, num_layers=1, is_bidirectional=False, rnn_mode='lstm'),
],
                      debug=True,
                      name='Latent')
f_decoder = N.Sequence([
    N.Flatten(outdim=2),
    N.Dense(num_units=1024, b_init=None, activation=K.linear),
    N.BatchNorm(axes=0, activation=K.relu)
Example #14
0
    ds = fuel.load_mnist()
else:
    ds = fuel.load_cifar10()
print(ds)

X = K.placeholder(shape=(None, ) + ds['X_train'].shape[1:], name='X')
y = K.placeholder(shape=(None, ), name='y', dtype='int32')

# ===========================================================================
# Build network
# ===========================================================================
ops = N.Sequence([
    N.Dimshuffle((0, 1, 2, 'x')) if USE_MNIST_DATA else N.Dimshuffle(
        (0, 2, 3, 1)),
    N.Conv(32, filter_size=3, strides=1, pad='same', activation=K.linear),
    N.BatchNorm(axes='auto', activation=K.relu),
    N.Pool(pool_size=2, strides=None),
    N.Dimshuffle(pattern=(0, 3, 1, 2)),
    N.Flatten(outdim=3),
    N.CudnnRNN(18,
               initial_states=None,
               rnn_mode='lstm',
               num_layers=2,
               input_mode='linear',
               direction_mode='unidirectional',
               params_split=False),
    N.Flatten(outdim=2),
    N.Dense(128, activation=K.relu),
    N.Dense(10, activation=K.softmax)
],
                 debug=True)
Example #15
0
    K.placeholder(shape=(None, ) + shape[1:],
                  dtype='float32',
                  name='input%d' % i)
    for i, shape in enumerate(as_tuple_of_shape(train.shape))
]
X = inputs[0]
y = inputs[1]
print("Inputs:", ctext(inputs, 'cyan'))
# ====== create the networks ====== #
with N.args_scope([('Conv', 'Dense'),
                   dict(b_init=None, activation=K.linear, pad='same')],
                  ['BatchNorm', dict(activation=K.relu)]):
    f = N.Sequence([
        N.Dimshuffle(pattern=(0, 1, 2, 'x')),
        N.Conv(num_filters=32, filter_size=(9, 7)),
        N.BatchNorm(),
        N.Pool(pool_size=(3, 2), strides=2),
        N.Conv(num_filters=64, filter_size=(5, 3)),
        N.BatchNorm(),
        N.Pool(pool_size=(3, 1), strides=(2, 1), name='PoolOutput1'),
        N.Conv(num_filters=64, filter_size=(5, 3)),
        N.BatchNorm(),
        N.Pool(pool_size=(3, 2), strides=(2, 2), name='PoolOutput2'),
        N.Flatten(outdim=2),
        N.Dense(512, name="LatentDense"),
        N.BatchNorm(),
        N.Dense(512),
        N.BatchNorm(),
        N.Dense(n_classes)
    ],
                   debug=1)
Example #16
0
y = K.placeholder(shape=(None,), name='y_input')
# ===========================================================================
# Create the network
# ===========================================================================
LATENT_DROPOUT = 0.3
if args.cnn:
  with N.args_scope(([N.Conv, N.Dense], dict(b_init=None, activation=K.linear)),
                    (N.BatchNorm, dict(activation=tf.nn.elu)),
                    (N.Pool, dict(mode='max', pool_size=2))):
    f_encoder = N.Sequence([
        N.Dropout(level=0.5),
        N.Dimshuffle((0, 2, 3, 1)) if is_cifar10 else N.Dimshuffle((0, 1, 2, 'x')),

        N.Conv(num_filters=32, filter_size=3, pad='valid'),
        N.Pool(),
        N.BatchNorm(),

        N.Conv(num_filters=64, filter_size=3, pad='same'),
        N.BatchNorm(),

        N.Conv(num_filters=64, filter_size=3, pad='valid'),
        N.BatchNorm(activation=tf.nn.elu),
        N.Pool(),

        N.Flatten(outdim=2),
        N.Dense(num_units=args.dim)
    ], debug=True, name='EncoderNetwork')

    f_decoder = N.Sequence([
        N.Dropout(level=LATENT_DROPOUT, noise_type='uniform'),
        N.Noise(level=1.0, noise_type='gaussian'),
Example #17
0
# ===========================================================================
# Create model
# ===========================================================================
inputs = [K.placeholder(shape=(None,) + shape[1:], dtype='float32', name='input%d' % i)
          for i, shape in enumerate(as_tuple_of_shape(train.shape))]
X = inputs[0]
y = inputs[1]
print("Inputs:", ctext(inputs, 'cyan'))
# ====== create the networks ====== #
with N.args_scope(
    [('Conv', 'Dense'), dict(b_init=None, activation=K.linear, pad='same')],
        ['BatchNorm', dict(activation=K.relu)]):
  f = N.Sequence([
      N.Dimshuffle(pattern=(0, 1, 2, 'x')),

      N.Conv(num_filters=32, filter_size=(9, 7)), N.BatchNorm(),
      N.Pool(pool_size=(3, 2), strides=2),
      N.Conv(num_filters=64, filter_size=(5, 3)), N.BatchNorm(),
      N.Pool(pool_size=(3, 1), strides=(2, 1), name='PoolOutput1'),
      N.Conv(num_filters=64, filter_size=(5, 3)), N.BatchNorm(),
      N.Pool(pool_size=(3, 2), strides=(2, 2), name='PoolOutput2'),

      N.Flatten(outdim=2),

      N.Dense(512, name="LatentDense"), N.BatchNorm(),
      N.Dense(512), N.BatchNorm(),

      N.Dense(n_classes)
  ], debug=1)
# ====== create outputs ====== #
y_logit = f(X)