Example #1
0
def gender(X, f, **kwargs):
    nb_gender = kwargs.get('nb_gender', 4)
    if f is None:
        f = N.Sequence([
            N.Dimshuffle(pattern=(0, 1, 2, 'x')),
            N.Conv(num_filters=32,
                   filter_size=3,
                   strides=1,
                   b_init=None,
                   pad='valid'),
            N.BatchNorm(activation=K.relu),
            N.Pool(pool_size=2, mode='avg'),
            N.Conv(num_filters=64,
                   filter_size=3,
                   strides=1,
                   b_init=None,
                   pad='valid'),
            N.BatchNorm(activation=K.relu),
            N.Pool(pool_size=2, mode='avg'),
            N.Flatten(outdim=3),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=(0, 1)),
            N.AutoRNN(num_units=128,
                      rnn_mode='gru',
                      num_layers=2,
                      input_mode='linear',
                      direction_mode='unidirectional'),
            N.Flatten(outdim=2),
            N.Dense(num_units=nb_gender, activation=K.softmax)
        ],
                       debug=True)
    return f(X), f
Example #2
0
    def test_shape(self):
        x = K.variable(np.ones((25, 8, 12)))

        def test_func(func):
            y = func(x)
            yT = func.T(func(x))
            self.assertEquals(K.eval(y).shape, tuple(y.shape.as_list()))
            self.assertEquals(K.eval(yT).shape, (25, 8, 12))
            self.assertEquals(K.eval(yT).shape, tuple(yT.shape.as_list()))

        test_func(N.Flatten(outdim=2))
        test_func(N.Flatten(outdim=1))
        test_func(N.Reshape((25, 4, 2, 6, 2)))
        test_func(N.Dimshuffle((2, 0, 1)))
Example #3
0
 def test_computational_graph3(self):
     # validate the number of updates found by ComputationGraph
     X = K.placeholder(shape=(None, 28, 28, 3))
     f = N.Sequence([
         N.Conv(32, 3, pad='same', activation=K.linear),
         N.BatchNorm(activation=K.relu),
         N.Flatten(outdim=2),
         N.Dense(16),
         N.BatchNorm(),
         N.Dense(10)
     ])
     K.set_training(True)
     y_train = f(X)
     K.set_training(False)
     y_score = f(X)
     self.assertTrue(
         K.get_shape(y_train) == K.get_shape(y_score)
         and K.get_shape(y_score) == (None, 10))
     cc_train = K.ComputationGraph(y_train)
     cc_score = K.ComputationGraph(y_score)
     self.assertTrue(len(cc_score.updates) == 0)
     self.assertTrue(len(cc_train.updates) == 4)
     # create real function
     fn_train = K.function(X, y_train)
     fn_score = K.function(X, y_score)
     shape1 = fn_train(np.random.rand(12, 28, 28, 3)).shape
     shape2 = fn_score(np.random.rand(12, 28, 28, 3)).shape
     self.assertTrue(shape1 == shape2 and shape1 == (12, 10))
Example #4
0
    def test_seq(self):
        X = K.placeholder((None, 28, 28, 1))
        f = N.Sequence([
            N.Conv(8, (3, 3), strides=1, pad='same'),
            N.Dimshuffle(pattern=(0, 3, 1, 2)),
            N.Flatten(outdim=2),
            N.Noise(level=0.3, noise_dims=None, noise_type='gaussian'),
            N.Dense(128, activation=tf.nn.relu),
            N.Dropout(level=0.3, noise_dims=None),
            N.Dense(10, activation=tf.nn.softmax)
        ])
        y = f(X)
        yT = f.T(y)
        f1 = K.function(X, y, defaults={K.is_training(): True})
        f2 = K.function(X, yT, defaults={K.is_training(): False})

        f = cPickle.loads(cPickle.dumps(f))
        y = f(X)
        yT = f.T(y)
        f3 = K.function(X, y, defaults={K.is_training(): True})
        f4 = K.function(X, yT, defaults={K.is_training(): False})

        x = np.random.rand(12, 28, 28, 1)

        self.assertEquals(f1(x).shape, (2688, 10))
        self.assertEquals(f3(x).shape, (2688, 10))
        self.assertEqual(np.round(f1(x).sum(), 4), np.round(f3(x).sum(), 4))
        self.assertEquals(y.shape.as_list(), (None, 10))

        self.assertEquals(f2(x).shape, (12, 28, 28, 1))
        self.assertEquals(f4(x).shape, (12, 28, 28, 1))
        self.assertEqual(str(f2(x).sum())[:4], str(f4(x).sum())[:4])
        self.assertEquals(yT.shape.as_list(), (None, 28, 28, 1))
Example #5
0
def cnn(X, y):
  nb_classes = y.shape.as_list()[-1]
  with N.args_scope(['Conv', dict(b_init=None, activation=K.linear)],
                    ['BatchNorm', dict(activation=K.relu)]):
    f = N.Sequence([
        N.Dimshuffle(pattern=(0, 2, 3, 1)),
        N.Conv(32, (3, 3), pad='same', stride=(1, 1)),
        N.BatchNorm(),
        N.Conv(32, (3, 3), pad='same', stride=(1, 1),
               b_init=0, activation=K.relu),
        N.Pool(pool_size=(2, 2), strides=None, mode='max'),
        N.Dropout(level=0.25),
        #
        N.Conv(64, (3, 3), pad='same', stride=(1, 1)),
        N.BatchNorm(),
        N.Conv(64, (3, 3), pad='same', stride=(1, 1),
               b_init=0., activation=K.relu),
        N.Pool(pool_size=(2, 2), strides=None, mode='max'),
        N.Dropout(level=0.25),
        #
        N.Flatten(outdim=2),
        N.Dense(512, activation=K.relu),
        N.Dropout(level=0.5),
        N.Dense(nb_classes, activation=K.linear)
    ], debug=1)
  logit = f(X)
  prob = tf.nn.softmax(logit)
  return {'logit': logit, 'prob': prob}
Example #6
0
def test(X, y):
  nb_classes = y.shape.as_list()[-1]
  f = N.Sequence([
      N.Flatten(outdim=2),
      N.Dense(512, activation=K.relu),
      N.Dropout(level=0.5),
      N.Dense(nb_classes, activation=K.linear)
  ], debug=2)
  logit = f(X)
  prob = tf.nn.softmax(logit)
  return {'logit': logit, 'prob': prob}
Example #7
0
 def test_slice_ops(self):
     X = K.placeholder(shape=(None, 28, 28, 28, 3))
     f = N.Sequence([
         N.Conv(32, 3, pad='same', activation=K.linear),
         N.BatchNorm(activation=tf.nn.relu),
         N.Flatten(outdim=4)[:, 8:12, 18:25, 13:],
     ])
     y = f(X)
     fn = K.function(X, y)
     self.assertTrue(
         fn(np.random.rand(12, 28, 28, 28, 3)).shape[1:] == tuple(
             y.shape.as_list()[1:]))
     self.assertEqual(y.shape.as_list()[1:], [4, 7, 883])
Example #8
0
def ladder1(X, y, states, **kwargs):
    noise = kwargs.get('noise', 0.3)
    # hyperparameters that denote the importance of each layer
    denoising_cost = [1000.0, 10.0, 0.10, 0.10, 0.10]

    if states is None:
        #
        f_encoder = N.Sequence([
            N.Flatten(outdim=2),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=10, activation=K.softmax),
        ],
                               all_layers=True,
                               debug=True,
                               name='Encoder')
        #
        f_decoder = N.Sequence([
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Reshape(shape=(-1, 28, 28)),
        ],
                               all_layers=True,
                               debug=True,
                               name='Decoder')
    else:
        f_encoder, f_decoder = states
    y_encoder_clean = f_encoder(X, noise=-1)[2::2]
    y_encoder_corrp = f_encoder(X, noise=1)[2::2]
    print(len(y_encoder_clean), len(y_encoder_corrp))
    exit()
    return (None, None), [f_encoder, f_decoder]
Example #9
0
    def test_load_save3(self):
        X = K.placeholder(shape=(None, 28, 28))
        ops = N.Sequence([
            N.Dimshuffle(pattern=(0, 1, 2, 'x')),
            N.Conv(8, (3, 3), strides=(1, 1), pad='same', activation=K.relu),
            K.pool2d,
            N.Flatten(outdim=2),
            N.Dense(64, activation=K.relu),
            N.Dense(10, activation=K.softmax)
        ])
        y = ops(X)
        f1 = K.function(X, y)

        ops_ = cPickle.loads(
            cPickle.dumps(ops, protocol=cPickle.HIGHEST_PROTOCOL))
        y_ = ops_(X)
        f2 = K.function(X, y_)

        x = np.random.rand(32, 28, 28)
        self.assertEqual(np.sum(f1(x) - f2(x)), 0.)
Example #10
0
    f_encoder = N.Sequence([
        N.Dropout(level=0.5),
        N.Dimshuffle((0, 2, 3, 1)) if is_cifar10 else N.Dimshuffle((0, 1, 2, 'x')),

        N.Conv(num_filters=32, filter_size=3, pad='valid'),
        N.Pool(),
        N.BatchNorm(),

        N.Conv(num_filters=64, filter_size=3, pad='same'),
        N.BatchNorm(),

        N.Conv(num_filters=64, filter_size=3, pad='valid'),
        N.BatchNorm(activation=tf.nn.elu),
        N.Pool(),

        N.Flatten(outdim=2),
        N.Dense(num_units=args.dim)
    ], debug=True, name='EncoderNetwork')

    f_decoder = N.Sequence([
        N.Dropout(level=LATENT_DROPOUT, noise_type='uniform'),
        N.Noise(level=1.0, noise_type='gaussian'),
        N.Dimshuffle((0, 'x', 'x', 1)),

        N.TransposeConv(num_filters=64, filter_size=3, pad='valid'),
        N.Upsample(size=2, axes=(1, 2)),
        N.BatchNorm(),

        N.TransposeConv(num_filters=64, filter_size=3, pad='same'),
        N.BatchNorm(),
Example #11
0
with N.args_scope(
    ['TimeDelayedConv',
     dict(time_pool='none', activation=K.relu)],
    ['Dense', dict(activation=K.linear, b_init=None)]):
    f = N.Sequence([
        N.Dropout(level=0.3),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(
            n_new_features=512, n_time_context=7, name="LatentTDNN"),
        N.Dense(512),
        N.BatchNorm(activation=K.relu),
        N.Dense(1500),
        N.BatchNorm(activation=K.relu),
        N.StatsPool(axes=1, output_mode='concat'),
        N.Flatten(outdim=2, name="StatsPooling"),
        N.Dense(512, name="LatentDense"),
        N.BatchNorm(activation=K.relu),
        N.Dense(512),
        N.BatchNorm(activation=K.relu),
        N.Dense(num_units=n_classes,
                activation=K.linear,
                b_init=init_ops.constant_initializer(0))
    ],
                   debug=1)
# ====== create outputs ====== #
y_logit = f(X)
y_proba = tf.nn.softmax(y_logit)
z1 = K.ComputationGraph(y_proba).get(roles=N.Dense,
                                     scope='LatentDense',
                                     beginning_scope=False)[0]
Example #12
0
# ===========================================================================
# Build model
# ===========================================================================
f = N.Sequence(
    [
        N.Embedding(max_features, embedding_size),
        N.Dropout(0.25),
        N.Dimshuffle(pattern=(0, 1, 'x', 2)),  # convolution on time dimension
        N.Conv(nb_filter,
               filter_size=(filter_length, 1),
               pad='valid',
               stride=(1, 1),
               activation=K.relu),
        N.Pool(pool_size=(pool_length, 1), mode='max'),
        N.Flatten(outdim=3),
        N.Merge(
            [
                N.Dense(lstm_output_size, activation=K.linear,
                        name='ingate'),  # input-gate
                N.Dense(lstm_output_size,
                        activation=K.linear,
                        name='forgetgate'),  # forget-gate
                N.Dense(lstm_output_size,
                        activation=K.linear,
                        name='cellupdate'),  # cell-update
                N.Dense(lstm_output_size, activation=K.linear,
                        name='outgate')  # output-gate
            ],
            merge_function=K.concatenate),
        N.LSTM(num_units=lstm_output_size, input_mode='skip')[:, -1],
Example #13
0
    def test_mnist(self):
        ds = fuel.load_mnist()
        m = model.SequentialClassifier(N.Flatten(outdim=2),
                                       N.Dense(64, activation=K.relu),
                                       N.Dense(10, activation=K.softmax))
        m.set_inputs(
            K.placeholder(shape=(None, 28, 28), name='X',
                          dtype='float32')).set_outputs(
                              K.placeholder(shape=(None, ),
                                            name='y',
                                            dtype='int32'))
        # ====== query info ====== #
        m.path
        self.assertEqual(m.is_initialized, True)
        self.assertEqual(m.input_shape, (None, 28, 28))
        self.assertEqual(m.output_shape, (None, 10))
        # ====== training test ====== #
        m.set_training_info(learning_rate=0.001, n_epoch=3)
        m.fit(X=(ds['X_train'], ds['y_train']),
              X_valid=(ds['X_valid'], ds['y_valid']))
        score = m.score(ds['X_test'][:], ds['y_test'][:])
        self.assertEqual(
            score > 0.8,
            True,
            msg='Test if the model get reasonable results: %f accuracy' %
            score)
        # ====== make prediction and transform test ====== #
        np.random.seed(12)
        _ = np.random.rand(8, 28, 28)
        self.assertEqual(m.transform(_).shape, (8, 10))
        self.assertEqual(
            np.isclose(m.predict_proba(_).sum(-1), 1.).sum() == 8, True)
        self.assertEqual(len(m.predict(_)), 8)
        # ====== pickling test ====== #
        str_old = str(m)
        p_old = m.get_params(True)

        m = cPickle.loads(cPickle.dumps(m, protocol=cPickle.HIGHEST_PROTOCOL))
        str_new = str(m)
        p_new = m.get_params(True)
        # ====== test same configurations ====== #
        self.assertEqual(str_new, str_old)
        # ====== test same params ====== #
        for i, j in p_new.iteritems():
            k = p_old[i]
            for a, b in zip(j, k):
                self.assertEqual(np.array_equal(a, b), True)
        # ====== test set params ====== #
        params = m.get_params(deep=True)
        params_new = {}
        for n, p in params.iteritems():
            params_new[n] = [
                np.random.rand(*i.shape).astype('float32') for i in p
            ]
        m.set_params(**params_new)
        # test if equal new onces
        for i, j in m.get_params(deep=True).iteritems():
            k = params_new[i]
            for a, b in zip(j, k):
                self.assertEqual(np.array_equal(a, b), True)
        # ====== training test ====== #
        print('Re-train the model second time:')
        m.fit(X=(ds['X_train'], ds['y_train']),
              X_valid=(ds['X_valid'], ds['y_valid']))
        score = m.score(ds['X_test'][:], ds['y_test'][:])
        self.assertEqual(
            score > 0.8,
            True,
            msg='Test if the model get reasonable results: %f accuracy' %
            score)
Example #14
0
CNN = [
    N.Dimshuffle(pattern=(0, 1, 2, 'x')),
    N.Conv(num_filters=32,
           filter_size=3,
           pad='same',
           strides=1,
           activation=K.linear),
    N.BatchNorm(activation=K.relu),
    N.Conv(num_filters=64,
           filter_size=3,
           pad='same',
           strides=1,
           activation=K.linear),
    N.BatchNorm(activation=K.relu),
    N.Pool(pool_size=2, strides=None, pad='valid', mode='max'),
    N.Flatten(outdim=3)
] if args['cnn'] else []

f = N.Sequence(
    CNN + [
        # ====== RNN ====== #
        N.AutoRNN(128,
                  rnn_mode='lstm',
                  num_layers=3,
                  direction_mode='bidirectional',
                  prefer_cudnn=True),

        # ====== Dense ====== #
        N.Flatten(outdim=2),
        # N.Dropout(level=0.2), # adding dropout does not help
        N.Dense(num_units=1024, activation=K.relu),
Example #15
0
def convolutional_vae(X, saved_states, **kwargs):
    """ convolutional_vae

    Return
    ------
    [y_encoder, y_decoder]

    States
    ------
    [f_inference (encoder), f_generative (decoder)]

    """
    n = kwargs.get('n', 10)
    batch_size = K.get_shape(X)[0]
    if batch_size is None:
        raise ValueError(
            "You must specify batch_size dimension for the input placeholder.")
    # ====== init ====== #
    if saved_states is None:
        # Encoder
        f_inference = N.Sequence([
            N.Reshape(shape=(-1, 28, 28, 1)),
            N.Conv(num_filters=32,
                   filter_size=3,
                   strides=1,
                   pad='valid',
                   b_init=init_ops.constant_initializer(0.),
                   activation=K.elu),
            N.Conv(num_filters=64,
                   filter_size=5,
                   strides=2,
                   pad='same',
                   b_init=init_ops.constant_initializer(0.),
                   activation=K.elu),
            N.Dropout(level=0.1),
            N.Flatten(outdim=2),
            N.Dense(num_units=n * 2, b_init=None),
            N.BatchNorm(axes=0)
        ],
                                 debug=True,
                                 name='Encoder')
        # Decoder
        f_generative = N.Sequence([
            N.Dimshuffle(pattern=(0, 'x', 'x', 1)),
            N.TransposeConv(num_filters=64,
                            filter_size=3,
                            strides=1,
                            pad='valid',
                            b_init=init_ops.constant_initializer(0.),
                            activation=K.elu),
            N.TransposeConv(num_filters=32,
                            filter_size=5,
                            strides=2,
                            pad='same',
                            b_init=init_ops.constant_initializer(0.),
                            activation=K.elu),
            N.TransposeConv(num_filters=1,
                            filter_size=13,
                            strides=3,
                            pad='valid',
                            b_init=None),
            N.BatchNorm(activation=K.linear),
            N.Flatten(outdim=3)
        ],
                                  debug=True,
                                  name="Decoder")
    else:
        f_inference, f_generative = saved_states
    # ====== Perfrom ====== #
    # Encoder
    y_encoder = f_inference(K.cast(X, 'float32'))
    mu = y_encoder[:, :n]
    sigma = K.softplus(y_encoder[:, n:])
    qz = Normal(mu=mu, sigma=sigma, name='Normal_qz')
    # Decoder
    z = Normal(mu=K.zeros(shape=(batch_size, n)),
               sigma=K.ones(shape=(batch_size, n)),
               name="Normal_pz")
    logits = f_generative(z)
    X_reconstruct = Bernoulli(logits=logits)
    # inference
    params = f_inference.parameters + f_generative.parameters
    inference = ed.KLqp(latent_vars={z: qz}, data={X_reconstruct: X})
    # ====== get cost for training ====== #
    # Bind p(x, z) and q(z | x) to the same placeholder for x.
    if K.is_training():
        import tensorflow as tf
        inference.initialize()
        if True:
            optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0)
            updates = optimizer.apply_gradients(
                optimizer.compute_gradients(inference.loss, var_list=params))
            init = tf.global_variables_initializer()
            init.run()
            f_train = K.function(X, inference.loss, updates)
        else:
            optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0)
            inference.initialize(optimizer=optimizer, var_list=params)
            init = tf.global_variables_initializer()
            init.run()
            f_train = lambda x: inference.update(feed_dict={X: x})['loss']
    samples = K.sigmoid(logits)
    return (samples, z, qz), (f_inference, f_generative)