Example #1
0
def ladder1(X, y, states, **kwargs):
    noise = kwargs.get('noise', 0.3)
    # hyperparameters that denote the importance of each layer
    denoising_cost = [1000.0, 10.0, 0.10, 0.10, 0.10]

    if states is None:
        #
        f_encoder = N.Sequence([
            N.Flatten(outdim=2),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(
                axes=0, noise_level=noise, noise_dims=None, activation=K.relu),
            N.Dense(num_units=10, activation=K.softmax),
        ],
                               all_layers=True,
                               debug=True,
                               name='Encoder')
        #
        f_decoder = N.Sequence([
            N.Dense(num_units=128, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=256, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Dense(num_units=1024, b_init=None),
            N.BatchNorm(axes=0, activation=K.relu),
            N.Reshape(shape=(-1, 28, 28)),
        ],
                               all_layers=True,
                               debug=True,
                               name='Decoder')
    else:
        f_encoder, f_decoder = states
    y_encoder_clean = f_encoder(X, noise=-1)[2::2]
    y_encoder_corrp = f_encoder(X, noise=1)[2::2]
    print(len(y_encoder_clean), len(y_encoder_corrp))
    exit()
    return (None, None), [f_encoder, f_decoder]
Example #2
0
def feedforward_vae(X, X1, f):
    if f is None:
        f = N.Sequence([
            N.Dense(num_units=10, activation=K.softmax),
            N.Dropout(level=0.5)
        ])
    return f(X), f
Example #3
0
    def test_seq(self):
        X = K.placeholder((None, 28, 28, 1))
        f = N.Sequence([
            N.Conv(8, (3, 3), strides=1, pad='same'),
            N.Dimshuffle(pattern=(0, 3, 1, 2)),
            N.Flatten(outdim=2),
            N.Noise(level=0.3, noise_dims=None, noise_type='gaussian'),
            N.Dense(128, activation=tf.nn.relu),
            N.Dropout(level=0.3, noise_dims=None),
            N.Dense(10, activation=tf.nn.softmax)
        ])
        y = f(X)
        yT = f.T(y)
        f1 = K.function(X, y, defaults={K.is_training(): True})
        f2 = K.function(X, yT, defaults={K.is_training(): False})

        f = cPickle.loads(cPickle.dumps(f))
        y = f(X)
        yT = f.T(y)
        f3 = K.function(X, y, defaults={K.is_training(): True})
        f4 = K.function(X, yT, defaults={K.is_training(): False})

        x = np.random.rand(12, 28, 28, 1)

        self.assertEquals(f1(x).shape, (2688, 10))
        self.assertEquals(f3(x).shape, (2688, 10))
        self.assertEqual(np.round(f1(x).sum(), 4), np.round(f3(x).sum(), 4))
        self.assertEquals(y.shape.as_list(), (None, 10))

        self.assertEquals(f2(x).shape, (12, 28, 28, 1))
        self.assertEquals(f4(x).shape, (12, 28, 28, 1))
        self.assertEqual(str(f2(x).sum())[:4], str(f4(x).sum())[:4])
        self.assertEquals(yT.shape.as_list(), (None, 28, 28, 1))
Example #4
0
 def test_computational_graph3(self):
     # validate the number of updates found by ComputationGraph
     X = K.placeholder(shape=(None, 28, 28, 3))
     f = N.Sequence([
         N.Conv(32, 3, pad='same', activation=K.linear),
         N.BatchNorm(activation=K.relu),
         N.Flatten(outdim=2),
         N.Dense(16),
         N.BatchNorm(),
         N.Dense(10)
     ])
     K.set_training(True)
     y_train = f(X)
     K.set_training(False)
     y_score = f(X)
     self.assertTrue(
         K.get_shape(y_train) == K.get_shape(y_score)
         and K.get_shape(y_score) == (None, 10))
     cc_train = K.ComputationGraph(y_train)
     cc_score = K.ComputationGraph(y_score)
     self.assertTrue(len(cc_score.updates) == 0)
     self.assertTrue(len(cc_train.updates) == 4)
     # create real function
     fn_train = K.function(X, y_train)
     fn_score = K.function(X, y_score)
     shape1 = fn_train(np.random.rand(12, 28, 28, 3)).shape
     shape2 = fn_score(np.random.rand(12, 28, 28, 3)).shape
     self.assertTrue(shape1 == shape2 and shape1 == (12, 10))
Example #5
0
def cnn(X, y):
  nb_classes = y.shape.as_list()[-1]
  with N.args_scope(['Conv', dict(b_init=None, activation=K.linear)],
                    ['BatchNorm', dict(activation=K.relu)]):
    f = N.Sequence([
        N.Dimshuffle(pattern=(0, 2, 3, 1)),
        N.Conv(32, (3, 3), pad='same', stride=(1, 1)),
        N.BatchNorm(),
        N.Conv(32, (3, 3), pad='same', stride=(1, 1),
               b_init=0, activation=K.relu),
        N.Pool(pool_size=(2, 2), strides=None, mode='max'),
        N.Dropout(level=0.25),
        #
        N.Conv(64, (3, 3), pad='same', stride=(1, 1)),
        N.BatchNorm(),
        N.Conv(64, (3, 3), pad='same', stride=(1, 1),
               b_init=0., activation=K.relu),
        N.Pool(pool_size=(2, 2), strides=None, mode='max'),
        N.Dropout(level=0.25),
        #
        N.Flatten(outdim=2),
        N.Dense(512, activation=K.relu),
        N.Dropout(level=0.5),
        N.Dense(nb_classes, activation=K.linear)
    ], debug=1)
  logit = f(X)
  prob = tf.nn.softmax(logit)
  return {'logit': logit, 'prob': prob}
Example #6
0
def gender(X, f, **kwargs):
    nb_gender = kwargs.get('nb_gender', 4)
    if f is None:
        f = N.Sequence([
            N.Dimshuffle(pattern=(0, 1, 2, 'x')),
            N.Conv(num_filters=32,
                   filter_size=3,
                   strides=1,
                   b_init=None,
                   pad='valid'),
            N.BatchNorm(activation=K.relu),
            N.Pool(pool_size=2, mode='avg'),
            N.Conv(num_filters=64,
                   filter_size=3,
                   strides=1,
                   b_init=None,
                   pad='valid'),
            N.BatchNorm(activation=K.relu),
            N.Pool(pool_size=2, mode='avg'),
            N.Flatten(outdim=3),
            N.Dense(num_units=512, b_init=None),
            N.BatchNorm(axes=(0, 1)),
            N.AutoRNN(num_units=128,
                      rnn_mode='gru',
                      num_layers=2,
                      input_mode='linear',
                      direction_mode='unidirectional'),
            N.Flatten(outdim=2),
            N.Dense(num_units=nb_gender, activation=K.softmax)
        ],
                       debug=True)
    return f(X), f
Example #7
0
 def odin_net1():
     "FNN"
     f = N.Sequence([
         N.Dense(32, W_init=random(784, 32), b_init=zeros(32),
             activation=K.relu),
         N.Dense(16, W_init=random(32, 16), b_init=zeros(16),
             activation=K.softmax)
     ])
     return X2, f(X2)
Example #8
0
 def odin_net3():
     "RNN"
     W = [random(28, 32), random(32, 32), random(32), random_bin(12, 28)]
     f = N.Sequence([
         N.Dense(num_units=32, W_init=W[0], b_init=W[2],
             activation=K.linear),
         N.RNN(num_units=32, activation=K.relu,
             W_init=W[1])
     ])
     return X1, f(X1, hid_init=zeros(1, 32))
Example #9
0
def test(X, y):
  nb_classes = y.shape.as_list()[-1]
  f = N.Sequence([
      N.Flatten(outdim=2),
      N.Dense(512, activation=K.relu),
      N.Dropout(level=0.5),
      N.Dense(nb_classes, activation=K.linear)
  ], debug=2)
  logit = f(X)
  prob = tf.nn.softmax(logit)
  return {'logit': logit, 'prob': prob}
def dense_creator():
    net = N.Sequence([
        N.Dense(int(args.hdim),
                b_init=0 if args.no_batchnorm else None,
                activation=K.relu if args.no_batchnorm else K.linear),
        None if args.no_batchnorm else N.BatchNorm(activation=K.relu)
    ],
                     debug=True,
                     name="DenseBatchNorm%d" % index[0])
    index[0] += 1
    return net
Example #11
0
 def test_slice_ops(self):
     X = K.placeholder(shape=(None, 28, 28, 28, 3))
     f = N.Sequence([
         N.Conv(32, 3, pad='same', activation=K.linear),
         N.BatchNorm(activation=tf.nn.relu),
         N.Flatten(outdim=4)[:, 8:12, 18:25, 13:],
     ])
     y = f(X)
     fn = K.function(X, y)
     self.assertTrue(
         fn(np.random.rand(12, 28, 28, 28, 3)).shape[1:] == tuple(
             y.shape.as_list()[1:]))
     self.assertEqual(y.shape.as_list()[1:], [4, 7, 883])
Example #12
0
 def test_helper_ops_variables(self):
     X = K.placeholder(shape=(10, 20))
     f = N.Sequence([
         N.Dense(12),
         N.Dense(8),
         N.BatchNorm(),
         N.Dense(25, W_init=tf.zeros(shape=(8, 25)))
     ])
     y = f(X)
     self.assertEqual(y.shape.as_list(), [10, 25])
     self.assertEqual(len(f.variables), 10)
     self.assertEqual(len(f.parameters), 7)
     self.assertEqual(len(f.trainable_variables), 9)
Example #13
0
 def odin_net2():
     "CNN"
     f = N.Sequence([
         N.Dimshuffle((0, 1, 2, 'x')),
         N.Conv(12, (3, 3), strides=(1, 1), pad='same',
             untie_biases=False,
             W_init=random(3, 3, 1, 12),
             activation=K.relu),
         N.Pool(pool_size=(2, 2), strides=None, mode='max',
                ignore_border=True),
         N.Conv(16, (3, 3), strides=(1, 1), pad='same',
             untie_biases=False,
             W_init=random(3, 3, 12, 16),
             activation=K.sigmoid),
         N.Dimshuffle((0, 3, 1, 2))
     ])
     return X1, f(X1)
Example #14
0
    def test_computational_graph1(self):
        X = K.placeholder(shape=(None, 32), name='input')
        z = K.variable(np.random.rand(10, 10), name='z')
        f = N.Sequence(
            [N.Dense(16, activation=K.relu),
             N.Dense(8, activation=K.softmax)])
        y = f(X)
        add_auxiliary_variable(y, K.constant(10, name='aux_const'))

        tmp = K.ComputationGraph(y)
        self.assertEqual(len(tmp.placeholders), 1)
        self.assertEqual(len(tmp.trainable_variables), 4)
        self.assertEqual(len(tmp.parameters), 4)
        self.assertEqual(len(tmp.dict_of_placeholders), 1)
        self.assertEqual(len(tmp.auxiliary_variables), 1)
        tmp.intermediary_variables  # no idea how to test this
        self.assertEqual(len(tmp.updates), 1)
        self.assertEqual(K.ComputationGraph(y), tmp)
Example #15
0
    def test_load_save3(self):
        X = K.placeholder(shape=(None, 28, 28))
        ops = N.Sequence([
            N.Dimshuffle(pattern=(0, 1, 2, 'x')),
            N.Conv(8, (3, 3), strides=(1, 1), pad='same', activation=K.relu),
            K.pool2d,
            N.Flatten(outdim=2),
            N.Dense(64, activation=K.relu),
            N.Dense(10, activation=K.softmax)
        ])
        y = ops(X)
        f1 = K.function(X, y)

        ops_ = cPickle.loads(
            cPickle.dumps(ops, protocol=cPickle.HIGHEST_PROTOCOL))
        y_ = ops_(X)
        f2 = K.function(X, y_)

        x = np.random.rand(32, 28, 28)
        self.assertEqual(np.sum(f1(x) - f2(x)), 0.)
Example #16
0
def create():
    f = N.Sequence([
        N.Conv(8, (3, 3), strides=1, pad='same'),
        N.Dimshuffle(pattern=(0, 3, 1, 2)),
        N.FlattenLeft(outdim=2),
        N.Noise(level=0.3, noise_dims=None, noise_type='gaussian'),
        N.Dense(128, activation=K.relu),
        N.Dropout(level=0.3, noise_dims=None),
        N.Dense(10, activation=K.softmax)
    ],
                   debug=True)
    y = f(X)
    yT = f.T(y)
    f1 = K.function(X, y)
    f2 = K.function(X, yT)
    cPickle.dump(f, open(U.get_modelpath('dummy.ai', override=True), 'w'))

    _ = f1(x)
    print(_.shape, _.sum())
    _ = f2(x)
    print(_.shape, _.sum())
Example #17
0
# ===========================================================================
ds = fuel.load_cifar10()
print(ds)

X_train = K.placeholder(shape=(None, ) + ds['X_train'].shape[1:],
                        name='X_train')
X_score = K.placeholder(shape=(None, ) + ds['X_train'].shape[1:],
                        name='X_score')
y = K.placeholder(shape=(None, ), name='y', dtype='int32')

# ===========================================================================
# Build network
# ===========================================================================
ops = N.Sequence([
    N.Flatten(outdim=2),
    N.Dense(512, activation=K.relu),
    N.Dense(256, activation=K.relu),
    N.Dense(10, activation=K.softmax)
])
ops = cPickle.loads(cPickle.dumps(ops))  # test if the ops is pickle-able

y_pred_train = ops(X_train)
y_pred_score = ops(X_score)
cost_train = K.mean(K.categorical_crossentropy(y_pred_train, y))
cost_test_1 = K.mean(K.categorical_crossentropy(y_pred_score, y))
cost_test_2 = K.mean(K.categorical_accuracy(y_pred_score, y))
cost_test_3 = K.confusion_matrix(y_pred_score, y, labels=range(10))

parameters = ops.parameters
optimizer = K.optimizers.RMSProp(lr=0.0001, clipnorm=100.)
updates = optimizer(cost_train, parameters)
print('Building training functions ...')
Example #18
0
X = K.placeholder(shape=(None, MAX_SEQ_LEN), dtype='int32', name='X')
y = K.placeholder(shape=(None, nb_labels), dtype='float32', name='y')

f = N.Sequence([
    N.Embedding(tk.nb_words, embedding_dims, W_init=E),
    N.Dimshuffle(pattern=(0, 1, 'x', 2)),
    N.Conv(num_filters=128,
           filter_size=(5, 1),
           strides=1,
           pad='valid',
           activation=K.relu),
    N.Pool(pool_size=(5, 1), pad='valid', mode='max'),
    N.Conv(num_filters=128,
           filter_size=(5, 1),
           strides=1,
           pad='valid',
           activation=K.relu),
    N.Pool(pool_size=(5, 1), pad='valid', mode='max'),
    N.Conv(num_filters=128,
           filter_size=(5, 1),
           strides=1,
           pad='valid',
           activation=K.relu),
    N.Pool(pool_size=(35, 1), pad='valid', mode='max'),
    N.Flatten(outdim=2),
    N.Dense(num_units=128, activation=K.relu),
    N.Dense(num_units=nb_labels, activation=K.softmax)
],
               debug=True)

y_pred = f(X)
params = [p for p in f.parameters if not has_roles(p, EmbeddingWeight)]
Example #19
0
    def test_lstm(self):
        W_in_to_ingate = random(28, 32) / 12
        W_hid_to_ingate = random(32, 32) / 12
        b_ingate = random(32) / 12

        W_in_to_forgetgate = random(28, 32) / 12
        W_hid_to_forgetgate = random(32, 32) / 12
        b_forgetgate = random(32) / 12

        W_in_to_cell = random(28, 32) / 12
        W_hid_to_cell = random(32, 32) / 12
        b_cell = random(32) / 12

        W_in_to_outgate = random(28, 32) / 12
        W_hid_to_outgate = random(32, 32) / 12
        b_outgate = random(32) / 12

        W_cell_to_ingate = random(32) / 12
        W_cell_to_forgetgate = random(32) / 12
        W_cell_to_outgate = random(32) / 12

        cell_init = random(1, 32) / 12
        hid_init = random(1, 32) / 12
        # ====== pre-define parameters ====== #
        x = random(12, 28, 28)
        x_mask = np.random.randint(0, 2, size=(12, 28))
        # x_mask = np.ones(shape=(12, 28))
        # ====== odin ====== #
        X = K.placeholder(shape=(None, 28, 28), name='X')
        mask = K.placeholder(shape=(None, 28), name='mask', dtype='int32')

        f = N.Sequence([
            N.Merge([
                N.Dense(32,
                        W_init=W_in_to_ingate,
                        b_init=b_ingate,
                        activation=K.linear),
                N.Dense(32,
                        W_init=W_in_to_forgetgate,
                        b_init=b_forgetgate,
                        activation=K.linear),
                N.Dense(32,
                        W_init=W_in_to_cell,
                        b_init=b_cell,
                        activation=K.linear),
                N.Dense(32,
                        W_init=W_in_to_outgate,
                        b_init=b_outgate,
                        activation=K.linear)
            ],
                    merge_function=K.concatenate),
            N.LSTM(32,
                   activation=K.tanh,
                   gate_activation=K.sigmoid,
                   W_hid_init=[
                       W_hid_to_ingate, W_hid_to_forgetgate, W_hid_to_cell,
                       W_hid_to_outgate
                   ],
                   W_peepholes=[
                       W_cell_to_ingate, W_cell_to_forgetgate,
                       W_cell_to_outgate
                   ],
                   input_mode='skip',
                   name='lstm')
        ])
        y = f(X, h0=hid_init, c0=cell_init, mask=mask)
        f = K.function([X, mask], y)
        out1 = f(x, x_mask)
        # ====== lasagne ====== #
        if get_backend() == 'tensorflow':
            self.assertTrue(repr(np.sum(out1))[:4] == repr(43.652363)[:4])
            return
        l = lasagne.layers.InputLayer(shape=(None, 28, 28))
        l.input_var = X
        l_mask = lasagne.layers.InputLayer(shape=(None, 28))
        l_mask.input_var = mask
        l = lasagne.layers.LSTMLayer(
            l,
            num_units=32,
            ingate=lasagne.layers.Gate(
                nonlinearity=lasagne.nonlinearities.sigmoid,
                W_in=W_in_to_ingate,
                W_hid=W_hid_to_ingate,
                W_cell=W_cell_to_ingate,
                b=b_ingate),
            forgetgate=lasagne.layers.Gate(
                nonlinearity=lasagne.nonlinearities.sigmoid,
                W_in=W_in_to_forgetgate,
                W_hid=W_hid_to_forgetgate,
                W_cell=W_cell_to_forgetgate,
                b=b_forgetgate),
            cell=lasagne.layers.Gate(nonlinearity=lasagne.nonlinearities.tanh,
                                     W_in=W_in_to_cell,
                                     W_hid=W_hid_to_cell,
                                     W_cell=None,
                                     b=b_cell),
            outgate=lasagne.layers.Gate(
                nonlinearity=lasagne.nonlinearities.sigmoid,
                W_in=W_in_to_outgate,
                W_hid=W_hid_to_outgate,
                W_cell=W_cell_to_outgate,
                b=b_outgate),
            nonlinearity=lasagne.nonlinearities.tanh,
            cell_init=cell_init,
            hid_init=hid_init,
            mask_input=l_mask,
            precompute_input=True,
            backwards=False)
        y = lasagne.layers.get_output(l)
        f = K.function([X, mask], y)
        out2 = f(x, x_mask)
        # ====== test ====== #
        self.assertAlmostEqual(np.sum(np.abs(out1 - out2)), 0.)
Example #20
0
    def test_gru(self):
        # ====== pre-define parameters ====== #
        W_in_to_updategate = random(28, 32)
        W_hid_to_updategate = random(32, 32)
        b_updategate = random(32)
        #
        W_in_to_resetgate = random(28, 32)
        W_hid_to_resetgate = random(32, 32)
        b_resetgate = random(32)
        #
        W_in_to_hidden_update = random(28, 32)
        W_hid_to_hidden_update = random(32, 32)
        b_hidden_update = random(32)
        #
        hid_init = random(1, 32)
        x = random(12, 28, 28)
        x_mask = np.random.randint(0, 2, size=(12, 28))
        # ====== odin ====== #
        X = K.placeholder(shape=(None, 28, 28), name='X')
        mask = K.placeholder(shape=(None, 28), name='mask', dtype='int32')

        f = N.Sequence([
            N.Merge([
                N.Dense(32,
                        W_init=W_in_to_updategate,
                        b_init=b_updategate,
                        activation=K.linear,
                        name='update'),
                N.Dense(32,
                        W_init=W_in_to_resetgate,
                        b_init=b_resetgate,
                        activation=K.linear,
                        name='reset'),
                N.Dense(32,
                        W_init=W_in_to_hidden_update,
                        b_init=b_hidden_update,
                        activation=K.linear,
                        name='hidden')
            ],
                    merge_function=K.concatenate),
            N.GRU(32,
                  activation=K.tanh,
                  gate_activation=K.sigmoid,
                  W_hid_init=[
                      W_hid_to_updategate, W_hid_to_resetgate,
                      W_hid_to_hidden_update
                  ],
                  input_mode='skip')
        ])
        y = f(X, h0=hid_init, mask=mask)
        f = K.function([X, mask], y)
        out1 = f(x, x_mask)
        # ====== lasagne ====== #
        if get_backend() == 'tensorflow':
            self.assertTrue(repr(np.sum(out1))[:8] == repr(2490.0596)[:8])
            return
        l = lasagne.layers.InputLayer(shape=(None, 28, 28))
        l.input_var = X
        l_mask = lasagne.layers.InputLayer(shape=(None, 28))
        l_mask.input_var = mask
        l = lasagne.layers.GRULayer(
            l,
            num_units=32,
            updategate=lasagne.layers.Gate(
                W_cell=None,
                W_in=W_in_to_updategate,
                W_hid=W_hid_to_updategate,
                b=b_updategate,
                nonlinearity=lasagne.nonlinearities.sigmoid),
            resetgate=lasagne.layers.Gate(
                W_cell=None,
                W_in=W_in_to_resetgate,
                W_hid=W_hid_to_resetgate,
                b=b_resetgate,
                nonlinearity=lasagne.nonlinearities.sigmoid),
            hidden_update=lasagne.layers.Gate(
                W_cell=None,
                W_in=W_in_to_hidden_update,
                W_hid=W_hid_to_hidden_update,
                b=b_hidden_update,
                nonlinearity=lasagne.nonlinearities.tanh),
            hid_init=hid_init,
            mask_input=l_mask,
            precompute_input=True)
        y = lasagne.layers.get_output(l)
        f = K.function([X, mask], y)
        out2 = f(x, x_mask)
        # ====== test ====== #
        self.assertAlmostEqual(np.sum(np.abs(out1 - out2)), 0.)
Example #21
0
    TRAIN_MODEL = True
    with N.args_scope(
        ['TimeDelayedConv',
         dict(time_pool='none', activation=K.relu)],
        ['Dense', dict(activation=K.linear, b_init=None)],
        ['BatchNorm', dict(activation=K.relu)]):
        x_vec = N.Sequence([
            N.Dropout(level=0.3),
            N.TimeDelayedConv(n_new_features=512, n_time_context=5),
            N.TimeDelayedConv(n_new_features=512, n_time_context=5),
            N.TimeDelayedConv(n_new_features=512, n_time_context=7),
            N.Dense(512),
            N.BatchNorm(),
            N.Dense(1500),
            N.BatchNorm(),
            N.StatsPool(axes=1, output_mode='concat'),
            N.Flatten(outdim=2),
            N.Dense(512, name="LatentOutput"),
            N.BatchNorm(),
            N.Dense(512),
            N.BatchNorm(),
            N.Dense(n_speakers,
                    activation=K.linear,
                    b_init=init_ops.constant_initializer(value=0))
        ],
                           debug=1)
# ====== create outputs ====== #
y_logit = x_vec(X)
y_proba = tf.nn.softmax(y_logit)
z = K.ComputationGraph(y_proba).get(roles=N.Dense,
                                    scope='LatentOutput',
                                    beginning_scope=False)[0]
Example #22
0
# ====== create the networks ====== #
with N.args_scope(
    ['TimeDelayedConv',
     dict(time_pool='none', activation=K.relu)],
    ['Dense', dict(activation=K.linear, b_init=None)]):
    f = N.Sequence([
        N.Dropout(level=0.3),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(n_new_features=512, n_time_context=5),
        N.TimeDelayedConv(
            n_new_features=512, n_time_context=7, name="LatentTDNN"),
        N.Dense(512),
        N.BatchNorm(activation=K.relu),
        N.Dense(1500),
        N.BatchNorm(activation=K.relu),
        N.StatsPool(axes=1, output_mode='concat'),
        N.Flatten(outdim=2, name="StatsPooling"),
        N.Dense(512, name="LatentDense"),
        N.BatchNorm(activation=K.relu),
        N.Dense(512),
        N.BatchNorm(activation=K.relu),
        N.Dense(num_units=n_classes,
                activation=K.linear,
                b_init=init_ops.constant_initializer(0))
    ],
                   debug=1)
# ====== create outputs ====== #
y_logit = f(X)
y_proba = tf.nn.softmax(y_logit)
z1 = K.ComputationGraph(y_proba).get(roles=N.Dense,
                                     scope='LatentDense',
Example #23
0
f = N.Sequence(
    [
        N.Dimshuffle(pattern=(0, 1, 2, 'x')),
        N.Conv(num_filters=32,
               filter_size=3,
               pad='same',
               strides=1,
               activation=K.linear),
        N.BatchNorm(activation=K.relu),
        N.Conv(num_filters=64,
               filter_size=3,
               pad='same',
               strides=1,
               activation=K.linear),
        N.BatchNorm(activation=K.relu),
        N.Pool(pool_size=2, strides=None, pad='valid', mode='max'),
        N.Flatten(outdim=3),

        # ====== RNN ====== #
        N.AutoRNN(128,
                  rnn_mode='lstm',
                  num_layers=3,
                  direction_mode='bidirectional',
                  prefer_cudnn=True),

        # ====== Dense ====== #
        N.Flatten(outdim=2),
        # N.Dropout(level=0.2), # adding dropout does not help
        N.Dense(num_units=1024, activation=K.relu),
        N.Dense(num_units=512, activation=K.relu),
        N.Dense(num_units=nb_classes, activation=K.softmax)
    ],
    debug=True)
        N.Dense(int(args.hdim),
                b_init=0 if args.no_batchnorm else None,
                activation=K.relu if args.no_batchnorm else K.linear),
        None if args.no_batchnorm else N.BatchNorm(activation=K.relu)
    ],
                     debug=True,
                     name="DenseBatchNorm%d" % index[0])
    index[0] += 1
    return net


f_encoder = N.Sequence([
    N.Flatten(outdim=2),
    N.Dropout(level=args.xdrop) if args.xdrop > 0 else None,
    dense_creator(),
    dense_creator(),
    N.Dropout(level=args.edrop) if args.edrop > 0 else None,
],
                       debug=True,
                       name='Encoder')

f_decoder = N.Sequence([
    N.Dropout(level=args.zdrop) if args.zdrop > 0 else None,
    dense_creator(),
    dense_creator(),
    N.Dropout(level=args.ddrop) if args.ddrop > 0 else None,
],
                       debug=True,
                       name='Decoder')
# ===========================================================================
# Create statistical model
Example #25
0
y = inputs[1]
print("Inputs:", ctext(inputs, 'cyan'))
# ====== create the networks ====== #
with N.args_scope([('Conv', 'Dense'),
                   dict(b_init=None, activation=K.linear, pad='same')],
                  ['BatchNorm', dict(activation=K.relu)]):
    f = N.Sequence([
        N.Dimshuffle(pattern=(0, 1, 2, 'x')),
        N.Conv(num_filters=32, filter_size=(9, 7)),
        N.BatchNorm(),
        N.Pool(pool_size=(3, 2), strides=2),
        N.Conv(num_filters=64, filter_size=(5, 3)),
        N.BatchNorm(),
        N.Pool(pool_size=(3, 1), strides=(2, 1), name='PoolOutput1'),
        N.Conv(num_filters=64, filter_size=(5, 3)),
        N.BatchNorm(),
        N.Pool(pool_size=(3, 2), strides=(2, 2), name='PoolOutput2'),
        N.Flatten(outdim=2),
        N.Dense(512, name="LatentDense"),
        N.BatchNorm(),
        N.Dense(512),
        N.BatchNorm(),
        N.Dense(n_classes)
    ],
                   debug=1)
# ====== create outputs ====== #
y_logit = f(X)
y_proba = tf.nn.softmax(y_logit)
z1 = K.ComputationGraph(y_proba).get(roles=N.Pool,
                                     scope='PoolOutput1',
                                     beginning_scope=False)[0]
Example #26
0
test.set_recipes(recipes)
# ===========================================================================
# Create model
# ===========================================================================
inputs = [
    K.placeholder(shape=(None, ) + shape[1:],
                  dtype='float32',
                  name='input%d' % i) for i, shape in enumerate(train.shape)
]
print("Inputs:", ctext(inputs, 'cyan'))
# ====== create the network ====== #
f_encoder = N.Sequence([
    N.Dimshuffle(pattern=(0, 1, 2, 'x')),
    N.Conv(
        num_filters=32, filter_size=(7, 7), b_init=None, activation=K.linear),
    N.BatchNorm(),
    N.Pool(pool_size=(3, 2), strides=2),
],
                       debug=True,
                       name='Encoder')
f_latent = N.Sequence([
    N.Flatten(outdim=3),
    N.CudnnRNN(
        num_units=128, num_layers=1, is_bidirectional=False, rnn_mode='lstm'),
],
                      debug=True,
                      name='Latent')
f_decoder = N.Sequence([
    N.Flatten(outdim=2),
    N.Dense(num_units=1024, b_init=None, activation=K.linear),
    N.BatchNorm(axes=0, activation=K.relu)
Example #27
0
y_test = ds['y_test']

# ===========================================================================
# Create network
# ===========================================================================
X = K.placeholder(shape=(None, ) + X_learn.shape[1:], name='X')
y_true = K.placeholder(shape=(None, ), name='y_true', dtype='int32')

f = N.Sequence([
    N.Dimshuffle(pattern=(0, 2, 3, 1)),
    N.Conv(32, (3, 3), pad='same', stride=(1, 1), activation=K.relu),
    N.Conv(32, (3, 3), pad='same', stride=(1, 1), activation=K.relu),
    N.Pool(pool_size=(2, 2), ignore_border=True, strides=None, mode='max'),
    N.Dropout(level=0.25),
    N.Conv(64, (3, 3), pad='same', stride=(1, 1), activation=K.relu),
    N.Conv(64, (3, 3), pad='same', stride=(1, 1), activation=K.relu),
    N.Pool(pool_size=(2, 2), ignore_border=True, strides=None, mode='max'),
    N.Dropout(level=0.25),
    N.Flatten(outdim=2),
    N.Dense(512, activation=K.relu),
    N.Dropout(level=0.5),
    N.Dense(10, activation=K.softmax)
],
               debug=True)
K.set_training(True)
y_train = f(X)
K.set_training(False)
y_pred = f(X)

cost_train = K.mean(K.categorical_crossentropy(y_train, y_true))
cost_pred = K.mean(K.categorical_accuracy(y_pred, y_true))
cost_eval = K.mean(K.categorical_crossentropy(y_pred, y_true))
Example #28
0
# ===========================================================================
f = N.Sequence(
    [
        N.Embedding(max_features, embedding_size),
        N.Dropout(0.25),
        N.Dimshuffle(pattern=(0, 1, 'x', 2)),  # convolution on time dimension
        N.Conv(nb_filter,
               filter_size=(filter_length, 1),
               pad='valid',
               stride=(1, 1),
               activation=K.relu),
        N.Pool(pool_size=(pool_length, 1), mode='max'),
        N.Flatten(outdim=3),
        N.Merge(
            [
                N.Dense(lstm_output_size, activation=K.linear,
                        name='ingate'),  # input-gate
                N.Dense(lstm_output_size,
                        activation=K.linear,
                        name='forgetgate'),  # forget-gate
                N.Dense(lstm_output_size,
                        activation=K.linear,
                        name='cellupdate'),  # cell-update
                N.Dense(lstm_output_size, activation=K.linear,
                        name='outgate')  # output-gate
            ],
            merge_function=K.concatenate),
        N.LSTM(num_units=lstm_output_size, input_mode='skip')[:, -1],
        N.Dense(1, activation=K.sigmoid)
    ],
    debug=True)
K.set_training(True)
Example #29
0
# Create the network
# ===========================================================================
LATENT_DROPOUT = 0.3
if args.cnn:
  with N.args_scope(([N.Conv, N.Dense], dict(b_init=None, activation=K.linear)),
                    (N.BatchNorm, dict(activation=tf.nn.elu)),
                    (N.Pool, dict(mode='max', pool_size=2))):
    f_encoder = N.Sequence([
        N.Dropout(level=0.5),
        N.Dimshuffle((0, 2, 3, 1)) if is_cifar10 else N.Dimshuffle((0, 1, 2, 'x')),

        N.Conv(num_filters=32, filter_size=3, pad='valid'),
        N.Pool(),
        N.BatchNorm(),

        N.Conv(num_filters=64, filter_size=3, pad='same'),
        N.BatchNorm(),

        N.Conv(num_filters=64, filter_size=3, pad='valid'),
        N.BatchNorm(activation=tf.nn.elu),
        N.Pool(),

        N.Flatten(outdim=2),
        N.Dense(num_units=args.dim)
    ], debug=True, name='EncoderNetwork')

    f_decoder = N.Sequence([
        N.Dropout(level=LATENT_DROPOUT, noise_type='uniform'),
        N.Noise(level=1.0, noise_type='gaussian'),
        N.Dimshuffle((0, 'x', 'x', 1)),

        N.TransposeConv(num_filters=64, filter_size=3, pad='valid'),
Example #30
0
    ds = fuel.load_mnist()
else:
    ds = fuel.load_cifar10()

X = K.placeholder(shape=(None, ) + ds['X_train'].shape[1:], name='X')
y = K.placeholder(shape=(None, ), name='y', dtype='int32')

# ===========================================================================
# Build network
# ===========================================================================
ops = N.Sequence([
    N.Dimshuffle((0, 1, 2, 'x')) if USE_MNIST_DATA else None,
    N.BatchNorm(axes='auto'),
    N.Conv(32, (3, 3), strides=(1, 1), pad='same', activation=K.relu),
    N.Pool(pool_size=(2, 2), strides=None),
    N.Conv(64, (3, 3), strides=(1, 1), pad='same', activation=K.relu),
    N.Pool(pool_size=(2, 2), strides=None),
    N.Flatten(outdim=2),
    N.Dense(256, activation=K.relu),
    N.Dense(10, activation=K.softmax)
],
                 debug=True)
ops = cPickle.loads(cPickle.dumps(ops))  # test if the ops is pickle-able

K.set_training(True)
y_pred_train = ops(X)
K.set_training(False)
y_pred_score = ops(X)

cost_train = K.mean(K.categorical_crossentropy(y_pred_train, y))
cost_test_1 = K.mean(K.categorical_crossentropy(y_pred_score, y))
cost_test_2 = K.mean(K.categorical_accuracy(y_pred_score, y))