def test_dft_preprocess_data_with_axes(sign): shape = (2, 3, 4) axes = 1 # Only middle index counts correct_arr = [] for _, j, __ in product(range(shape[0]), range(shape[1]), range(shape[2])): correct_arr.append(1 - 2 * (j % 2)) arr = np.ones(shape, dtype='complex64') dft_preprocess_data(arr, shift=True, axes=axes, out=arr, sign=sign) assert all_almost_equal(arr.ravel(), correct_arr) axes = [0, -1] # First and last correct_arr = [] for i, _, k in product(range(shape[0]), range(shape[1]), range(shape[2])): correct_arr.append(1 - 2 * ((i + k) % 2)) arr = np.ones(shape, dtype='complex64') dft_preprocess_data(arr, shift=True, axes=axes, out=arr, sign=sign) assert all_almost_equal(arr.ravel(), correct_arr)
def test_dft_preprocess_data_halfcomplex(sign): shape = (2, 3, 4) # With shift correct_arr = [] for i, j, k in product(range(shape[0]), range(shape[1]), range(shape[2])): correct_arr.append(1 - 2 * ((i + j + k) % 2)) arr = np.ones(shape, dtype='float64') preproc = dft_preprocess_data(arr, shift=True, sign=sign) # out-of-place out = np.empty_like(arr) dft_preprocess_data(arr, shift=True, out=out, sign=sign) # in-place dft_preprocess_data(arr, shift=True, out=arr, sign=sign) # in-place assert all_almost_equal(preproc.ravel(), correct_arr) assert all_almost_equal(arr.ravel(), correct_arr) assert all_almost_equal(out.ravel(), correct_arr) # Without shift imag = 1j if sign == '-' else -1j correct_arr = [] for i, j, k in product(range(shape[0]), range(shape[1]), range(shape[2])): argsum = sum((idx * (1 - 1 / shp)) for idx, shp in zip((i, j, k), shape)) correct_arr.append(np.exp(imag * np.pi * argsum)) arr = np.ones(shape, dtype='float64') preproc = dft_preprocess_data(arr, shift=False, sign=sign) assert all_almost_equal(preproc.ravel(), correct_arr) # Non-float input works, too arr = np.ones(shape, dtype='int') preproc = dft_preprocess_data(arr, shift=False, sign=sign) assert all_almost_equal(preproc.ravel(), correct_arr) # In-place modification not possible for float array and no shift arr = np.ones(shape, dtype='float64') with pytest.raises(ValueError): dft_preprocess_data(arr, shift=False, out=arr, sign=sign)
def test_dft_preprocess_data(sign): shape = (2, 3, 4) # With shift correct_arr = [] for i, j, k in product(range(shape[0]), range(shape[1]), range(shape[2])): correct_arr.append((1 + 1j) * (1 - 2 * ((i + j + k) % 2))) arr = np.ones(shape, dtype='complex64') * (1 + 1j) preproc = dft_preprocess_data(arr, shift=True, sign=sign) # out-of-place dft_preprocess_data(arr, shift=True, out=arr, sign=sign) # in-place assert all_almost_equal(preproc.ravel(), correct_arr) assert all_almost_equal(arr.ravel(), correct_arr) # Without shift imag = 1j if sign == '-' else -1j correct_arr = [] for i, j, k in product(range(shape[0]), range(shape[1]), range(shape[2])): argsum = sum((idx * (1 - 1 / shp)) for idx, shp in zip((i, j, k), shape)) correct_arr.append((1 + 1j) * np.exp(imag * np.pi * argsum)) arr = np.ones(shape, dtype='complex64') * (1 + 1j) dft_preprocess_data(arr, shift=False, out=arr, sign=sign) assert all_almost_equal(arr.ravel(), correct_arr) # Bad input with pytest.raises(ValueError): dft_preprocess_data(arr, out=arr, sign=1) arr = np.zeros(shape, dtype='S2') with pytest.raises(ValueError): dft_preprocess_data(arr)
def test_fourier_trafo_completely(): # Complete explicit test of all FT components on two small examples # Discretization with 4 points discr = odl.uniform_discr(-2, 2, 4, dtype="complex") # Interval boundaries -2, -1, 0, 1, 2 assert np.allclose(discr.partition.cell_boundary_vecs[0], [-2, -1, 0, 1, 2]) # Grid points -1.5, -0.5, 0.5, 1.5 assert np.allclose(discr.grid.coord_vectors[0], [-1.5, -0.5, 0.5, 1.5]) # First test function, symmetric. Can be represented exactly in the # discretization. def f(x): return (x >= -1) & (x <= 1) def fhat(x): return np.sqrt(2 / np.pi) * sinc(x) # Discretize f, check values f_discr = discr.element(f) assert np.allclose(f_discr, [0, 1, 1, 0]) # "s" = shifted, "n" = not shifted # Reciprocal grids recip_s = reciprocal_grid(discr.grid, shift=True) recip_n = reciprocal_grid(discr.grid, shift=False) assert np.allclose(recip_s.coord_vectors[0], np.linspace(-np.pi, np.pi / 2, 4)) assert np.allclose(recip_n.coord_vectors[0], np.linspace(-3 * np.pi / 4, 3 * np.pi / 4, 4)) # Range range_part_s = odl.uniform_partition_fromgrid(recip_s) range_s = odl.uniform_discr_frompartition(range_part_s, dtype="complex") range_part_n = odl.uniform_partition_fromgrid(recip_n) range_n = odl.uniform_discr_frompartition(range_part_n, dtype="complex") # Pre-processing preproc_s = [1, -1, 1, -1] preproc_n = [np.exp(1j * 3 / 4 * np.pi * k) for k in range(4)] fpre_s = dft_preprocess_data(f_discr, shift=True) fpre_n = dft_preprocess_data(f_discr, shift=False) assert np.allclose(fpre_s, f_discr * discr.element(preproc_s)) assert np.allclose(fpre_n, f_discr * discr.element(preproc_n)) # FFT step, replicating the _call_numpy method fft_s = np.fft.fftn(fpre_s, s=discr.shape, axes=[0]) fft_n = np.fft.fftn(fpre_n, s=discr.shape, axes=[0]) assert np.allclose(fft_s, [0, -1 + 1j, 2, -1 - 1j]) assert np.allclose( fft_n, [np.exp(1j * np.pi * (3 - 2 * k) / 4) + np.exp(1j * np.pi * (3 - 2 * k) / 2) for k in range(4)] ) # Interpolation kernel FT interp_s = np.sinc(np.linspace(-1 / 2, 1 / 4, 4)) / np.sqrt(2 * np.pi) interp_n = np.sinc(np.linspace(-3 / 8, 3 / 8, 4)) / np.sqrt(2 * np.pi) assert np.allclose(interp_s, _interp_kernel_ft(np.linspace(-1 / 2, 1 / 4, 4), interp="nearest")) assert np.allclose(interp_n, _interp_kernel_ft(np.linspace(-3 / 8, 3 / 8, 4), interp="nearest")) # Post-processing postproc_s = np.exp(1j * np.pi * np.linspace(-3 / 2, 3 / 4, 4)) postproc_n = np.exp(1j * np.pi * np.linspace(-9 / 8, 9 / 8, 4)) fpost_s = dft_postprocess_data( range_s.element(fft_s), real_grid=discr.grid, recip_grid=recip_s, shift=[True], axes=(0,), interp="nearest" ) fpost_n = dft_postprocess_data( range_n.element(fft_n), real_grid=discr.grid, recip_grid=recip_n, shift=[False], axes=(0,), interp="nearest" ) assert np.allclose(fpost_s, fft_s * postproc_s * interp_s) assert np.allclose(fpost_n, fft_n * postproc_n * interp_n) # Comparing to the known result sqrt(2/pi) * sinc(x) assert np.allclose(fpost_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(fpost_n, fhat(recip_n.coord_vectors[0])) # Doing the exact same with direct application of the FT operator ft_op_s = FourierTransform(discr, shift=True) ft_op_n = FourierTransform(discr, shift=False) assert ft_op_s.range.grid == recip_s assert ft_op_n.range.grid == recip_n ft_f_s = ft_op_s(f) ft_f_n = ft_op_n(f) assert np.allclose(ft_f_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(ft_f_n, fhat(recip_n.coord_vectors[0])) # Second test function, asymmetric. Can also be represented exactly in the # discretization. def f(x): return (x >= 0) & (x <= 1) def fhat(x): return np.exp(-1j * x / 2) * sinc(x / 2) / np.sqrt(2 * np.pi) # Discretize f, check values f_discr = discr.element(f) assert np.allclose(f_discr, [0, 0, 1, 0]) # Pre-processing fpre_s = dft_preprocess_data(f_discr, shift=True) fpre_n = dft_preprocess_data(f_discr, shift=False) assert np.allclose(fpre_s, [0, 0, 1, 0]) assert np.allclose(fpre_n, [0, 0, -1j, 0]) # FFT step fft_s = np.fft.fftn(fpre_s, s=discr.shape, axes=[0]) fft_n = np.fft.fftn(fpre_n, s=discr.shape, axes=[0]) assert np.allclose(fft_s, [1, -1, 1, -1]) assert np.allclose(fft_n, [-1j, 1j, -1j, 1j]) fpost_s = dft_postprocess_data( range_s.element(fft_s), real_grid=discr.grid, recip_grid=recip_s, shift=[True], axes=(0,), interp="nearest" ) fpost_n = dft_postprocess_data( range_n.element(fft_n), real_grid=discr.grid, recip_grid=recip_n, shift=[False], axes=(0,), interp="nearest" ) assert np.allclose(fpost_s, fft_s * postproc_s * interp_s) assert np.allclose(fpost_n, fft_n * postproc_n * interp_n) # Comparing to the known result exp(-1j*x/2) * sinc(x/2) / sqrt(2*pi) assert np.allclose(fpost_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(fpost_n, fhat(recip_n.coord_vectors[0])) # Doing the exact same with direct application of the FT operator ft_f_s = ft_op_s(f) ft_f_n = ft_op_n(f) assert np.allclose(ft_f_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(ft_f_n, fhat(recip_n.coord_vectors[0]))
def test_fourier_trafo_completely(): # Complete explicit test of all FT components on two small examples # Discretization with 4 points discr = odl.uniform_discr(-2, 2, 4, dtype='complex') # Interval boundaries -2, -1, 0, 1, 2 assert np.allclose(discr.partition.cell_boundary_vecs[0], [-2, -1, 0, 1, 2]) # Grid points -1.5, -0.5, 0.5, 1.5 assert np.allclose(discr.grid.coord_vectors[0], [-1.5, -0.5, 0.5, 1.5]) # First test function, symmetric. Can be represented exactly in the # discretization. def f(x): return (x >= -1) & (x <= 1) def fhat(x): return np.sqrt(2 / np.pi) * sinc(x) # Discretize f, check values f_discr = discr.element(f) assert np.allclose(f_discr, [0, 1, 1, 0]) # "s" = shifted, "n" = not shifted # Reciprocal grids recip_s = reciprocal_grid(discr.grid, shift=True) recip_n = reciprocal_grid(discr.grid, shift=False) assert np.allclose(recip_s.coord_vectors[0], np.linspace(-np.pi, np.pi / 2, 4)) assert np.allclose(recip_n.coord_vectors[0], np.linspace(-3 * np.pi / 4, 3 * np.pi / 4, 4)) # Range range_part_s = odl.uniform_partition_fromgrid(recip_s) range_s = odl.uniform_discr_frompartition(range_part_s, dtype='complex') range_part_n = odl.uniform_partition_fromgrid(recip_n) range_n = odl.uniform_discr_frompartition(range_part_n, dtype='complex') # Pre-processing preproc_s = [1, -1, 1, -1] preproc_n = [np.exp(1j * 3 / 4 * np.pi * k) for k in range(4)] fpre_s = dft_preprocess_data(f_discr, shift=True) fpre_n = dft_preprocess_data(f_discr, shift=False) assert np.allclose(fpre_s, f_discr * discr.element(preproc_s)) assert np.allclose(fpre_n, f_discr * discr.element(preproc_n)) # FFT step, replicating the _call_numpy method fft_s = np.fft.fftn(fpre_s, s=discr.shape, axes=[0]) fft_n = np.fft.fftn(fpre_n, s=discr.shape, axes=[0]) assert np.allclose(fft_s, [0, -1 + 1j, 2, -1 - 1j]) assert np.allclose(fft_n, [ np.exp(1j * np.pi * (3 - 2 * k) / 4) + np.exp(1j * np.pi * (3 - 2 * k) / 2) for k in range(4) ]) # Interpolation kernel FT interp_s = np.sinc(np.linspace(-1 / 2, 1 / 4, 4)) / np.sqrt(2 * np.pi) interp_n = np.sinc(np.linspace(-3 / 8, 3 / 8, 4)) / np.sqrt(2 * np.pi) assert np.allclose( interp_s, _interp_kernel_ft(np.linspace(-1 / 2, 1 / 4, 4), interp='nearest')) assert np.allclose( interp_n, _interp_kernel_ft(np.linspace(-3 / 8, 3 / 8, 4), interp='nearest')) # Post-processing postproc_s = np.exp(1j * np.pi * np.linspace(-3 / 2, 3 / 4, 4)) postproc_n = np.exp(1j * np.pi * np.linspace(-9 / 8, 9 / 8, 4)) fpost_s = dft_postprocess_data(range_s.element(fft_s), real_grid=discr.grid, recip_grid=recip_s, shift=[True], axes=(0, ), interp='nearest') fpost_n = dft_postprocess_data(range_n.element(fft_n), real_grid=discr.grid, recip_grid=recip_n, shift=[False], axes=(0, ), interp='nearest') assert np.allclose(fpost_s, fft_s * postproc_s * interp_s) assert np.allclose(fpost_n, fft_n * postproc_n * interp_n) # Comparing to the known result sqrt(2/pi) * sinc(x) assert np.allclose(fpost_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(fpost_n, fhat(recip_n.coord_vectors[0])) # Doing the exact same with direct application of the FT operator ft_op_s = FourierTransform(discr, shift=True) ft_op_n = FourierTransform(discr, shift=False) assert ft_op_s.range.grid == recip_s assert ft_op_n.range.grid == recip_n ft_f_s = ft_op_s(f) ft_f_n = ft_op_n(f) assert np.allclose(ft_f_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(ft_f_n, fhat(recip_n.coord_vectors[0])) # Second test function, asymmetric. Can also be represented exactly in the # discretization. def f(x): return (x >= 0) & (x <= 1) def fhat(x): return np.exp(-1j * x / 2) * sinc(x / 2) / np.sqrt(2 * np.pi) # Discretize f, check values f_discr = discr.element(f) assert np.allclose(f_discr, [0, 0, 1, 0]) # Pre-processing fpre_s = dft_preprocess_data(f_discr, shift=True) fpre_n = dft_preprocess_data(f_discr, shift=False) assert np.allclose(fpre_s, [0, 0, 1, 0]) assert np.allclose(fpre_n, [0, 0, -1j, 0]) # FFT step fft_s = np.fft.fftn(fpre_s, s=discr.shape, axes=[0]) fft_n = np.fft.fftn(fpre_n, s=discr.shape, axes=[0]) assert np.allclose(fft_s, [1, -1, 1, -1]) assert np.allclose(fft_n, [-1j, 1j, -1j, 1j]) fpost_s = dft_postprocess_data(range_s.element(fft_s), real_grid=discr.grid, recip_grid=recip_s, shift=[True], axes=(0, ), interp='nearest') fpost_n = dft_postprocess_data(range_n.element(fft_n), real_grid=discr.grid, recip_grid=recip_n, shift=[False], axes=(0, ), interp='nearest') assert np.allclose(fpost_s, fft_s * postproc_s * interp_s) assert np.allclose(fpost_n, fft_n * postproc_n * interp_n) # Comparing to the known result exp(-1j*x/2) * sinc(x/2) / sqrt(2*pi) assert np.allclose(fpost_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(fpost_n, fhat(recip_n.coord_vectors[0])) # Doing the exact same with direct application of the FT operator ft_f_s = ft_op_s(f) ft_f_n = ft_op_n(f) assert np.allclose(ft_f_s, fhat(recip_s.coord_vectors[0])) assert np.allclose(ft_f_n, fhat(recip_n.coord_vectors[0]))