Example #1
0
def test_operator_pointwise_product():
    """Check call and adjoint of operator pointwise multiplication."""
    if dom_eq_ran:
        mat1 = np.random.rand(3, 3)
        mat2 = np.random.rand(3, 3)
    else:
        mat1 = np.random.rand(4, 3)
        mat2 = np.random.rand(4, 3)

    op1 = MultiplyAndSquareOp(mat1)
    op2 = MultiplyAndSquareOp(mat2)
    x = noise_element(op1.domain)

    prod_op = odl.OperatorPointwiseProduct(op1, op2)

    # Evaluate
    expected = op1(x) * op2(x)
    check_call(prod_op, x, expected)

    # Derivative
    y = noise_element(op1.domain)
    expected = (op1.derivative(x)(y) * op2(x) + op2.derivative(x)(y) * op1(x))
    prod_deriv_op = prod_op.derivative(x)
    assert prod_deriv_op.is_linear
    check_call(prod_deriv_op, y, expected)

    # Derivative Adjoint
    z = noise_element(op1.range)
    expected = (op1.derivative(x).adjoint(z * op2(x)) +
                op2.derivative(x).adjoint(z * op1(x)))
    prod_deriv_adj_op = prod_deriv_op.adjoint
    assert prod_deriv_adj_op.is_linear
    check_call(prod_deriv_adj_op, z, expected)
Example #2
0
def test_operator_pointwise_product():
    """Test OperatorPointwiseProduct."""
    Aop = MultiplyAndSquareOp(np.random.rand(4, 3))
    Bop = MultiplyAndSquareOp(np.random.rand(4, 3))
    x = noise_element(Aop.domain)

    prod = odl.OperatorPointwiseProduct(Aop, Bop)

    # Evaluate
    expected = Aop(x) * Bop(x)
    check_call(prod, x, expected)

    # Derivative
    y = noise_element(Aop.domain)
    expected = (Aop.derivative(x)(y) * Bop(x) + Bop.derivative(x)(y) * Aop(x))
    derivative = prod.derivative(x)
    assert derivative.is_linear
    check_call(derivative, y, expected)

    # Adjoint
    z = noise_element(Aop.range)
    expected = (Aop.derivative(x).adjoint(z * Bop(x)) +
                Bop.derivative(x).adjoint(z * Aop(x)))
    adjoint = derivative.adjoint
    assert adjoint.is_linear
    check_call(adjoint, z, expected)